首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The first solid‐state structures of ortho‐sulfonated monoazo dyestuffs are reported and compared to those of their para‐ and meta‐sulfonated analogues. The structures of the 16 Na, K, Cs, Mg, Ca, Sr, and Ba ortho‐sulfonated salts are found to have fewer M? O3S bonds than their isomeric equivalents and this in turn means that the metal type is no longer the prime indicator of which structural type will be adopted. M? O3S bonds are replaced by M? OH2, M? HOR and M–π interactions, apparently for steric reasons. As well as new bonding motifs, the changed dye shape also leads to new packing motifs. The simple organic/inorganic layering ubiquitous to the para‐ and meta‐sulfonated dye salt structures is replaced by variations (organic bilayers, inorganic channels), each of which correlates with a different degree of molecular planarity in the sulfonated azo dye anion.  相似文献   

3.
Reactions between PhSiH3 and alkali‐metal diamidoalkylmagnesiates ([M{N(SiMe3)2}2MgBu], M=Li, Na, K) provide either selective alkyl metathesis or the formation of polyhydride aggregates contingent upon the identity of the Group 1 metal. In the case of [M{N(SiMe3)2}2MgBu], this reactivity results in a structurally unprecedented dodecametallic decahydride cluster species.  相似文献   

4.
5.
A series of seven new tetrazole‐based ligands (L1, L3–L8) containing terpyridine or bipyridine chromophores suited to the formation of luminescent complexes of lanthanides have been synthesized. All ligands were prepared from the respective carbonitriles by thermal cycloaddition of sodium azide. The crystal structures of the homoleptic terpyridine–tetrazolate complexes [Ln(Li)2]NHEt3 (Ln=Nd, Eu, Tb for i=1, 2; Ln=Eu for i=3, 4) and of the monoaquo bypyridine–tetrazolate complex [Eu(H2O)(L7)2]NHEt3 were determined. The tetradentate bipyridine–tetrazolate ligand forms nonhelical complexes that can contain a water molecule coordinated to the metal. Conversely, the pentadentate terpyridine–tetrazolate ligands wrap around the metal, thereby preventing solvent coordination and forming chiral double‐helical complexes similarly to the analogue terpyridine–carboxylate. Proton NMR spectroscopy studies show that the solid‐state structures of these complexes are retained in solution and indicate the kinetic stability of the hydrophobic complexes of terpyridine–tetrazolates. UV spectroscopy results suggest that terpyridine–tetrazolate complexes have a similar stability to their carboxylate analogues, which is sufficient for their isolation in aerobic conditions. The replacement of the carboxylate group with tetrazolate extends the absorption window of the corresponding terpyridine‐ (≈20 nm) and bipyridine‐based (25 nm) complexes towards the visible region (up to 440 nm). Moreover, the substitution of the terpyridine–tetrazolate system with different groups in the ligand series L3–L6 has a very important effect on both absorption spectra and luminescence efficiency of their lanthanide complexes. The tetrazole‐based ligands L1 and L3–L8 sensitize efficiently the luminescent emission of lanthanide ions in the visible and near‐IR regions with quantum yields ranging from 5 to 53 % for EuIII complexes, 6 to 35 % for TbIII complexes, and 0.1 to 0.3 % for NdIII complexes, which is among the highest reported for a neodymium complex. The luminescence efficiency could be related to the energy of the ligand triplet states, which are strongly correlated to the ligand structures.  相似文献   

6.
The synthesis of N‐heterocyclic carbene adducts of alkynyl lithium and magnesium is achieved, and different degrees of association are observed. Reaction of strontium amide nacnacSrN(SiMe3)2(thf) (nacnac=CH(CMe2,6‐iPr2C6H3N)2) with PhC≡CH in THF yields the dimeric alkynyl complex [nacnacSr(thf)(μ‐C≡CPh)]2 which shows an interesting coordination geometry around the metal center. The compound retains the THF molecules, unlike its lighter congener, even in hydrocarbon solvents.  相似文献   

7.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

8.
The treatment of the recently reported potassium salt (S)‐N,N′‐bis‐(1‐phenylethyl)benzamidinate ((S)‐KPEBA) and its racemic isomer (rac‐KPEBA) with anhydrous lanthanide trichlorides (Ln=Sm, Er, Yb, Lu) afforded mostly chiral complexes. The tris(amidinate) complex [{(S)‐PEBA}3Sm], bis(amidinate) complexes [{Ln(PEBA)2(μ‐Cl)}2] (Ln=Sm, Er, Yb, Lu), and mono(amidinate) compounds [Ln(PEBA)(Cl)2(thf)n] (Ln=Sm, Yb, Lu) were isolated and structurally characterized. As a result of steric effects, the homoleptic 3:1 complexes of the smaller lanthanide atoms Yb and Lu were not accessible. Furthermore, chiral bis(amidinate)–amido complexes [{(S)‐PEBA}2Ln{N(SiMe3)2}] (Ln=Y, Lu) were synthesized by an amine‐elimination reaction and salt metathesis. All of these chiral bis‐ and tris(amidinate) complexes had additional axial chirality and they all crystallized as diastereomerically pure compounds. By using rac‐PEBA as a ligand, an achiral meso arrangement of the ligands was observed. The catalytic activities and enantioselectivities of [{(S)‐PEBA}2Ln{N(SiMe3)2}] (Ln=Y, Lu) were investigated in hydroamination/cyclization reactions. A clear dependence of the rate of reaction and enantioselectivity on the ionic radius was observed, which showed higher reaction rates but poorer enantioselectivities for the yttrium compound.  相似文献   

9.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

10.
A new family in town! Treatment of a rare‐earth metal (Ln) and either a potential divalent rare‐earth metal (Ln′) or an alkaline earth metal (Ae) with 2,6‐diphenylphenol (HOdpp) at elevated temperatures (200–250 °C) afforded heterobimetallic aryloxo complexes (see figure). Both a charge‐separated species, [(Ln′/Ae)2(Odpp)3][Ln(Odpp)4], and a neutral species, [AeEu(Odpp)4], were obtained and crystallographically characterised.

  相似文献   


11.
The phenoxyamine magnesium complexes [{ONN}MgCH2Ph] ( 4 a : {ONN}=2,4‐tBu2‐6‐(CH2NMeCH2CH2NMe2)C6H2O?; 4 b : {ONN}=4‐tBu‐2‐(CH2NMeCH2CH2NMe2)‐6‐(SiPh3)C6H2O?) have been prepared and investigated with respect to their catalytic activity in the intramolecular hydroamination of aminoalkenes. The sterically more shielded triphenylsilyl‐substituted complex 4 b exhibits better thermal stability and higher catalytic activity. Kinetic investigations using complex 4 b in the cyclisation of 1‐allylcyclohexyl)methylamine ( 5 b ), respectively, 2,2‐dimethylpent‐4‐en‐1‐amine ( 5 c ), reveal a first‐order rate dependence on substrate and catalyst concentration. A significant primary kinetic isotope effect of 3.9±0.2 in the cyclisation of 5 b suggests significant N?H bond disruption in the rate‐determining transition state. The stoichiometric reaction of 4 b with 5 c revealed that at least two substrate molecules are required per magnesium centre to facilitate cyclisation. The reaction mechanism was further scrutinized computationally by examination of two rivalling mechanistic pathways. One scenario involves a coordinated amine molecule assisting in a concerted non‐insertive N?C ring closure with concurrent amino proton transfer from the amine onto the olefin, effectively combining the insertion and protonolysis step to a single step. The alternative mechanistic scenario involves a reversible olefin insertion step followed by rate‐determining protonolysis. DFT reveals that a proton‐assisted concerted N?C/C?H bond‐forming pathway is energetically prohibitive in comparison to the kinetically less demanding σ‐insertive pathway (ΔΔG=5.6 kcal mol?1). Thus, the σ‐insertive pathway is likely traversed exclusively. The DFT predicted total barrier of 23.1 kcal mol?1 (relative to the {ONN}Mg pyrrolide catalyst resting state) for magnesium?alkyl bond aminolysis matches the experimentally determined Eyring parameter (ΔG=24.1(±0.6) kcal mol?1 (298 K)) gratifyingly well.  相似文献   

12.
We have prepared and characterized a series of osmium complexes [Os2(CO)4(fpbpy)2] ( 1 ), [Os(CO)(fpbpy)2] ( 2 ), and [Os(fpbpy)2] ( 3 ) with tridentate 6‐pyrazol‐3‐yl 2,2′‐bipyridine chelating ligands. Upon the transformation of complex 2 into 3 through the elimination of the CO ligand, an extremely large change in the phosphorescence wavelength from 655 to 935 nm was observed. The results are rationalized qualitatively by the strong π‐accepting character of CO, which lowers the energy of the osmium dπ orbital, in combination with the lower degree of π conjugation in 2 owing to the absence of one possible pyridine‐binding site. As a result, the energy gap for both intraligand π–π* charge transfer (ILCT) and metal‐to‐ligand charge transfer (MLCT) is significantly greater in 2 . Firm support for this explanation was also provided by the time‐dependent DFT approach, the results of which led to the conclusion that the S0→T1 transition mainly involves MLCT between the osmium center and bipyridine in combination with pyrazolate‐to‐bipyridine 3π–π* ILCT. The relatively weak near‐infrared emission can be rationalized tentatively by the energy‐gap law, according to which the radiationless deactivation may be governed by certain low‐frequency motions with a high density of states. The information provided should allow the successful design of other emissive tridentate metal complexes, the physical properties of which could be significantly different from those of complexes with only a bidentate chromophore.  相似文献   

13.
Cationic, two‐coordinate gold π complexes that contain a phosphine or N‐heterocyclic supporting ligand have attracted considerable attention recently owing to the potential relevance of these species as intermediates in the gold‐catalyzed functionalization of C? C multiple bonds. Although neutral two‐coordinate gold π complexes have been known for over 40 years, examples of the cationic two‐coordinate gold(I) π complexes germane to catalysis remained undocumented prior to 2006. This situation has changed dramatically in recent years and well‐defined examples of two‐coordinate, cationic gold π complexes containing alkene, alkyne, diene, allene, and enol ether ligands have been documented. This Minireview highlights this recent work with a focus on the structure, bonding, and ligand exchange behavior of these complexes.  相似文献   

14.
Comprehensive studies on the coordination properties of tridentate nitrenium‐based ligands are presented. N‐heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of RhI, RhIII, Mo0, Ru0, RuII, PdII, PtII, PtIV, and AgI complexes based on these unusual ligands. Formation of nitrenium–metal bonds is unambiguously confirmed both in solution by selective 15N‐labeling experiments and in the solid state by X‐ray crystallography. The generality of N‐heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second‐row transition and post‐transition metals (Y–Cd) in terms of the corresponding bond‐dissociation energies.  相似文献   

15.
A wide variety of 2,5‐di(2‐pyridyl)pyrroles (dppHs) substituted at the C3 and C4 positions of the pyrrole core were obtained by direct condensation of a 2‐pyridylcarboxaldehyde (2 equiv), an α‐methylene ketone with at least one electron‐withdrawing substituent and ammonium acetate. A novel 2,5‐di(1,10‐phenanthrolin‐2‐yl)pyrrole was also characterised. The dppHs provide a direct, quick entry to dipyridylpyrrolato (dpp?)–metal complexes. The meridial tridentate dpp? ligand is a useful anionic analogue of the terpyridyl ligand. The first (dpp)Ru complexes are described; the 3,4‐substitution of the central pyrrole significantly perturbs the potentials of the redox processes of these complexes. A [(dpp)Ru(bpy)(MeCN)]+ (bpy=2,2′‐bipyridine) complex is an electrocatalyst for the reductive disproportionation of carbon dioxide to carbon monoxide and the carbonate ion.  相似文献   

16.
A series of PtII complexes Pt(fpbpy)Cl ( 1 ), Pt(fpbpy)(OAc) ( 2 ), Pt(fpbpy)(NHCOMe) ( 3 ), Pt(fpbpy)(NHCOEt) ( 4 ), and [Pt(fpbpy)(NCMe)](BF4) ( 5 ) with deprotonated 6‐(5‐trifluoromethyl‐pyrazol‐3‐yl)‐2,2′‐bipyridine terdentate ligand are prepared, among which 1 is converted to complexes 2 – 5 by a simple ligand substitution. Alternatively, acetamide complex 3 is prepared by hydrolysis of acetonitrile complex 5 , while the back conversion from 3 to 1 is regulated by the addition of HCl solution, showing the reaction sequence 1 → 5 → 3 → 1 . Multilayer OLED devices are successfully fabricated by using triphenyl‐(4‐(9‐phenyl‐9H‐fluoren‐9‐yl)phenyl) silane (TPSi‐F) as host material and with doping concentrations of 1 varying from 7 to 100 %. The electroluminescence showed a substantial red‐shifting versus the normal photoluminescence detected in solution. Moreover, at a doping concentration of 28 %, the device showed a saturated red luminescence with a maximum external quantum yield of 8.5 % at 20 mA cm?2 and a peak luminescence of 47 543 cd m?2 at 18.5 V.  相似文献   

17.
Three copper(II) complexes of the polydentate N‐donor ligand [4‐(4,6‐bis(1H‐pyrazol‐1‐yl)‐1,3,5‐triazin‐2‐yl)morpholine] (L) with chlorides, nitrates, and perchlorates as anions, namely, [CuCl2(L)] · 0.5(MeCN) ( 1 ), [Cu(NO3)2(H2O)(L)] · (MeCN) ( 2 ), and [Cu(L)2](ClO4)2 · (MeCN) ( 3 ) were synthesized and structurally characterized by IR, elemental analysis and X‐ray crystallographic analysis. In these complexes, the L ligand binds the copper(II) cation in the tridentate N3 form. The coordination arrangement around the central copper(II) atom is distorted square‐pyramidal in 1 but it is distorted octahedral in 2 and 3 . The interesting noncovalent interactions such as hydrogen bonds, π–π stacking, and anion–π interactions present in the solid‐state structures are discussed. The crystal results reveal that the counteranions play important roles in determining the diverse structures of these complexes. Moreover, the PXRD, TG, DRS, and fluorescence properties of compounds 1 – 3 were investigated.  相似文献   

18.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

19.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

20.
A polycyclic aromatic ligand for site‐selective metal coordination was designed by using DFT calculations. The computational prediction was confirmed by experiments: 2,3,6,7‐tetramethoxy‐9,10‐dimethylanthracene initially reacts with [(C5H5)Ru(MeCN)3]BF4 to give the kinetic product with a [(C5H5)Ru]+ fragment coordinated at the terminal ring, which is then transformed into the thermodynamic product with coordination through the central ring. These isomeric complexes have markedly different UV/Vis spectra, which was explained by analysis of the frontier orbitals. At the same time, the calculations suggest that electrostatic interactions are mainly responsible for the site selectivity of the coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号