首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly energetic 1,5‐di(nitramino)tetrazole and its salts were synthesized. The neutral compound is very sensitive and one of the most powerful non‐nuclear explosives to date. Selected nitrogen‐rich and metal salts were prepared. The potassium salt can be used as a sensitizer in place of tetracene. The obtained compounds were characterized by low‐temperature X‐ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high energetic performances of the 1,5‐dinitraminotetrazolates as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored.  相似文献   

2.
Here we report on the preparation of two hydrogen atom free 3,3′‐bi(1,2,4‐oxadiazole) derivatives. 5,5′‐Bis(fluorodinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole) was synthesised by fluorination of diammonium 5,5′‐bis(dinitromethanide)‐3,3′‐bi(1,2,4‐oxadiazole). For our previously reported analogue 5,5′‐bis(trinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole), a new synthetic route starting from new 3,3′‐bi(1,2,4‐oxadiazolyl)‐5,5′‐diacetic acid was developed. In this course also hitherto unknown 5,5′‐dimethyl‐3,3′‐bi(1,2,4‐oxadiazole) was isolated. The compounds were characterised by multinuclear NMR spectroscopy, IR and Raman spectroscopy, elemental analysis as well as mass spectrometry. X‐ray diffraction studies were performed and the crystal structures for the 5,5'‐dimethyl and 5,5'‐(fluorodinitromethyl) derivatives are reported. The energetic 5,5'‐(fluorodinitromethyl) and 5,5'‐(trinitromethyl) compounds do not contain any hydrogen atoms and show remarkable high densities. Furthermore, the thermal stabilities and sensitivities were determined by differential scanning calorimetry (DSC) and standardised impact and friction tests. The heats of formation were calculated by the atomisation method based on CBS‐4M enthalpies. With these values and the room‐temperature X‐ray densities, several detonation and propulsion parameters, such as the detonation velocity and pressure as well as the specific impulse of mixtures with aluminium, were computed using the EXPLO5 code.  相似文献   

3.
Energetic mono‐ and dicationic 3,4‐diaminotriazolium salts have been prepared by combining stoichiometric amounts (1:1 or 2:1 molar ratio) of 3,4‐diaminotriazole with various oxygen‐containing tetrazoles, and the structures have been confirmed by single‐crystal XRD for the first time. All structures are dominated by a strong hydrogen‐bond network owing to both amino groups and oxygen in the molecule. All salts, except 7 , exhibit excellent thermal stabilities with decomposition temperatures over 200 °C. Based on experimental densities and theoretical calculations carried out by using the Gaussian 03 suite of programs, all salts have calculated detonation pressures (20.3–33.9 GPa) and velocities (7095–8642 m s?1).  相似文献   

4.
1,1′‐Dinitramino‐5,5′‐bitetrazole and 1,1′‐dinitramino‐5,5′‐azobitetrazole were synthesized for the first time. The neutral compounds are extremely sensitive and powerful explosives. Selected nitrogen‐rich salts were prepared to adjust sensitivity and performance values. The compounds were characterized by low‐temperature X‐ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DTA/DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high performances of the 1,1′‐dinitramino‐5,5′‐bitetrazoles as energetic materials. The sensitivities toward impact, friction, and electrostatic discharge were also explored. Most of the compounds show sensitivities in the range of primary explosives and should only be handled with great care!  相似文献   

5.
3,3′‐Diamino‐4,4′‐bifurazane ( 1 ), 3,3′‐diaminoazo‐4,4′‐furazane ( 2 ), and 3,3′‐diaminoazoxy‐4,4′‐furazane ( 3 ) were nitrated in 100 % HNO3 to give corresponding 3,3′‐dinitramino‐4,4′‐bifurazane ( 4 ), 3,3′‐dinitramino‐4,4′‐azofurazane ( 5 ) and 3,3′‐dinitramino‐4,4′‐azoxyfurazane ( 6 ), respectively. The neutral compounds show very imposing explosive performance but possess lower thermal stability and higher sensitivity than hexogen (RDX). More than 40 nitrogen‐rich compounds and metal salts were prepared. Most compounds were characterized by low‐temperature X‐ray diffraction, all of them by infrared and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and by differential scanning calorimetry (DSC). Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high energetic performances of the nitraminofurazanes as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored. Additionally the general toxicity of the anions against vibrio fischeri, representative for an aquatic microorganism, was determined.  相似文献   

6.
A new way to make a bang : Several functionalized 1‐ethyl‐5‐aminotetrazoles, 1‐ethyl‐5‐nitrimino‐tetrazoles, and copper complexes have been synthesized and their chemical and energetic properties have been comprehensively characterized. The compounds belong to all classes of “energetic materials”: explosives, propellants, and pyrotechnics.

  相似文献   


7.
8.
Large nitramino‐substituted furazan anions were combined with small cations (hydroxylammonium, hydrazinium, and ammonium) to form a series of energetic salts that was fully characterized. The structures of several of the compounds ( 1 a , 2 a , 3 a , and 4 a ) were further confirmed by single‐crystal X‐ray diffraction. Based on their physiochemical properties, such as density, thermal stability, and sensitivity, together with the calculated detonation properties, it was found that they exhibit good detonation performance and have potential application as high‐energy‐density materials.  相似文献   

9.
1,3‐Dichloro‐2‐nitro‐2‐azapropane is an excellent precursor to dense energetic functionalized dipyrazolyl‐N‐nitromethanamines. This new family of energetic compounds was fully characterized by using 1H, 13C, and 15N NMR and IR spectroscopy, differential scanning calorimetry, elemental analysis, and impact sensitivity tests. Additionally, single‐crystal X‐ray structuring was done for 3 and 5? CH3CN, which gave insight into structural characteristics. The experimentally determined densities of 2 – 9 fall between 1.69 and 1.90 g cm?3. Heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 programs, respectively. The influence of different energetic moieties on the structural and energetic properties was established theoretically.  相似文献   

10.
Triazole links and polynitropyrazole rings give rise to compounds with energetic properties. These materials were fully characterized by NMR and infrared spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). In addition, the structures of compounds 5 and 8 were confirmed by single‐crystal X‐ray diffraction analysis. Detonation properties, calculated from heats of formation and experimental densities, thermal stabilities, and impact and friction sensitivities support the potential use of these materials for explosive applications.  相似文献   

11.
12.
1,1,3,3‐Tetra(1H‐tetrazol‐5‐yl)propane‐based energetic salts were synthesized in a simple and straightforward manner. The structures of these new salts were determined by 1H and 13C NMR spectroscopy, IR spectroscopy, MS, and elemental analysis. All of these compounds showed good thermal stabilities above 180 °C, as confirmed by thermogravimetric–differential thermal analysis (TG–DTA) measurements. Moreover, these salts also exhibited high positive enthalpies of formation, high nitrogen content, good thermal stabilities, and moderate detonation properties.  相似文献   

13.
High energy density materials with ethylene‐ and propylene bis(5‐nitroiminotetrazolate) as the anions are reported; all salts were fully characterized by IR, and 1H, 13C, and 15N NMR spectroscopy as well as elemental analyses. In addition, the heats of formation (ΔHf) and the detonation pressures (P) and velocities (D) were calculated.

  相似文献   


14.
A family of 3,6‐dinitropyrazolo[4,3‐c]pyrazole‐based energetic compounds was synthesized by using versatile N‐functionalization strategies. Subsequently, nine ionic derivatives of the N,N′‐(3,6‐dinitropyrazolo[4,3‐c]pyrazole‐1,4‐diyl)dinitramidate anion were prepared by acid‐base reactions and fully characterized by infrared, multinuclear NMR spectra, and elemental analysis. The structures of four of these compounds were further confirmed by single‐crystal X‐ray diffraction. Based on their different physical and detonation properties, these compounds exhibit promising potential as modern energetic materials and can be variously classified as green primary explosives, high‐performance secondary explosives, fuel‐rich propellants, and propellant oxidizers.  相似文献   

15.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

16.
17.
A new class of N,N′‐ethylene‐bridged bis(nitropyrazoles) was synthesized and fully characterized. The highly efficient formation of the N,N′‐ethylene bridge was accomplished using dibromoethane and ammonium or potassium pyrazolate. Further functional‐group transformations of diaminobis(pyrazole) and dichlorobis(pyrazole) gave rise to diversified derivatives, including dinitramino‐, diazido‐ and hexanitrobis(pyrazole). Single‐crystal X‐ray diffractions were obtained for hexanitro and diazido derivatives to illustrate the structural characteristics. Heats of formation and detonation performance were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. Because of the different functionalized groups, the impact and friction sensitivities of these new compounds range from insensitive to sensitive. Among them, the hexanitro derivative displays the most promising overall energetic properties (density (ρ)=1.84 g cm?3; decomposition temperature (Td)=250 °C; detonation pressure (P)=34.1 GPa; detonation velocity (vD)=8759 m s?1; impact sensitivity (IS)=25 J; friction sensitivity (FS)=160 N), which is competitive with those of 1,3,5‐trinitrotriazacyclohexane (ρ=1.80 g cm?3; Td=205 °C; P=35.0 GPa; vD=8762 m s?1; IS=7 J; FS=120 N).  相似文献   

18.
A simple and straightforward synthesis of 5,5′‐diamino‐4,4′‐dinitramino‐3,3′‐bi‐1,2,4‐triazole by the selective nitration of 4,4′,5,5′‐tetraamino‐3,3′‐bi‐1,2,4‐triazole is presented. The interaction of the amino and nitramino groups improves the energetic properties of this functionalized bitriazole. For a deeper investigation of these properties, various nitrogen‐rich derivatives were synthesized. The new compounds were investigated and characterized by spectroscopy (1H and 13C NMR, IR, Raman), elemental analysis, mass spectrometry, differential thermal analysis (DTA), X‐ray analysis, and impact and friction sensitivities (IS, FS). X‐ray analyses were performed and deliver insight into structural characteristics with which the stability of the compounds can be explained. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, revealing highly positive heats of formation. The energetic performance of the new molecules was predicted with the EXPLO5 V6.02 computer. A small‐scale shock reactivity test (SSRT) and a toxicity test gave a first impression of the performance and toxicity of selective compounds.  相似文献   

19.
含能材料HMX-RDX的热行为研究   总被引:3,自引:0,他引:3  
采用差示扫描量热法研究了含能材料1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷-环三甲撑三硝胺(HMX-RDX)的热行为。结果表明,当m(HMX)∶m(RDX)=25∶75时HMX和RDX达到了共熔。随着RDX含量的增加,HMX-RDX的晶型转变温度有所升高,晶型转化的热焓逐渐减少,共熔热焓却随之增加,共熔温度基本保持不变。  相似文献   

20.
Energetic coordination compounds (ECC) based on 3d or 4d transition metals show promising characteristics to be used as potential replacements for highly toxic lead‐containing primary explosives. Herein we report the synthesis of 12 new ECC based on 1‐azidoethyl‐5H‐tetrazole (AET) or 1‐ethyl‐5H‐tetrazole (1‐ETZ) as nitrogen‐rich ligands as well as various central metals (Cu2+, Fe2+, Zn2+, Ag+) and anions such as perchlorate and nitrate. The influence of the increased endothermicity by adding an additional azide group was studied by comparing analogous ECC based on AET and 1‐ETZ. Furthermore, the compounds were extensively analyzed by XRD, IR, EA, solid‐state UV/Vis, and DTA as well as their sensitivities toward impact and friction were determined with BAM standard techniques, together with their sensitivity against electrostatic discharge. The sensitivities were compared with the one toward ball drop impact measurements. Classical initiation tests (nitropenta filled detonators) and ignition by laser irradiation highly prove the potential use of the most promising compounds in lead‐free initiation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号