首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Given its well‐ordered continuous π stacking of nucleobases, DNA has been considered as a biomaterial for charge transfer in biosensors. For cathodic photocurrent generation resulting from hole transfer in DNA, sensitivity to DNA structure and base‐pair stacking has been confirmed. However, such information has not been provided for anodic photocurrent generation resulting from excess‐electron transfer in DNA. In the present study, we measured the anodic photocurrent of a DNA‐modified Au electrode. Our results demonstrate long‐distance excess‐electron transfer in DNA, which is dominated by a hopping mechanism, and the photocurrent generation is sequence dependent.  相似文献   

3.
Xiaoling Xiao  Wu Lu  Xin Yao 《Electroanalysis》2008,20(20):2247-2252
The direct electron transfer between hemoglobin (Hb) and the glassy carbon electrode (GC) can be readily achieved via a high biocompatible composite system based on biopolymer chitosan (CHT) and TiO2 nanorods (TiO2‐NRs). TiO2‐NRs greatly promote the electron transfer between Hb and GC, which contribute to the higher redox peaks. UV‐vis spectra result indicated the Hb entrapped in the composite film well keep its native structure. The immobilized Hb remains its bioelectrocatalytical activity to the reduction of H2O2 with a lower detection limit. A novel, sensitive, reproducible and stable electrochemical biosensing platform of H2O2 based on Hb‐TiO2‐CHT electrode is explored.  相似文献   

4.
C‐type cytochromes located on the outer membrane (OMCs) of genus Shewanella act as the main redox‐active species to mediate extracellular electron transfer (EET) from the inside of the outer membrane to the external environment: the central challenge that must be met for successful EET. The redox states of OMCs play a crucial role in dictating the rate and extent of EET. Here, we report that the surface wettability of the electrodes strongly influences the EET activity of living organisms of Shewanella loihica PV‐4 at a fixed external potential: the EET activity on a hydrophilic electrode is more than five times higher than that on a hydrophobic one. We propose that the redox state of OMCs varies significantly at electrodes with different wettability, resulting in different EET activities.  相似文献   

5.
6.
7.
A nanohybrid consisting of poly(3‐aminobenzenesulfonic acid‐co‐aniline) and multiwalled carbon nanotubes [MWCNT‐P(ABS‐A)]) on a gold electrode was used to immobilize the hexameric tyrosine‐coordinated heme protein (HTHP). The enzyme showed direct electron transfer between the heme group of the protein and the nanostructured surface. Desorption of the noncovalently bound heme from the protein could be excluded by control measurements with adsorbed hemin on aminohexanthiol‐modified electrodes. The nanostructuring and the optimised charge characteristics resulted in a higher protein coverage as compared with MUA/MU modified electrodes. The adsorbed enzyme shows catalytic activity for the cathodic H2O2 reduction and oxidation of NADH.  相似文献   

8.
9.
Diethylamino‐substituted oligophenylenevinylene (OPV) building blocks have been prepared and used for the synthesis of two [60]fullerene–OPV dyads, F‐D1 and F‐D2 , which exhibit different conjugation length of the OPV fragments. The electrochemical properties of these acceptor–donor dyads have been studied by cyclic voltammetry. The first reduction is always assigned to the fullerene moiety and the first oxidation centered on the diethylaniline groups of the OPV rods, thus making these systems suitable candidates for photoinduced electron transfer. Both the OPV and the fullerene‐centered fluorescence bands are quenched in toluene and benzonitrile, which suggests the occurrence of photoinduced electron transfer from the amino‐substituted OPVs to the carbon sphere in the dyads in both solvents. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species are detected in the visible (670 nm) and near‐IR (1300–1500 nm) regions, along with the much weaker fullerene anion band at λmax=1030 nm. Definitive evidence for photoinduced electron transfer in F‐D1 and F‐D2 comes from transient absorption measurements. A charge‐separated state is formed within 100 ps and decays in less than 5 ns.  相似文献   

10.
11.
Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c‐type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105 e s?1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+/Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.  相似文献   

12.
Redox reactions of solvated molecular species at gold‐electrode surfaces modified by electrochemically inactive self‐assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au–alkanedithiol–NP–molecule hybrid entity. The NP appears to relay long‐range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface‐confined 6‐(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak‐to‐peak separation for NPs in the order Au<Pt<Pd, especially when the length of the alkanedithiol increases from octanedithiol to decanedithiol. The corresponding apparent rate constants, kapp, for decanedithiol are 1170, 360 and 14 s?1 for NPs of Au, Pt and Pd, respectively, indicating that the efficiency of NP mediation of the ET clearly depends on the nature of the NP. Based on a preliminary analysis rooted in interfacial electrochemical ET theory, combined with a simplified two‐step view of the NP coupling to the electrode and the molecule, this observation is referred to the density of electronic states of the NPs, reflected in a broadening of the molecular electron/NP bridge group levels and energy‐gap differences between the Fermi levels of the different metals.  相似文献   

13.
Engineered heme proteins and biomimetic iron porphyrins have been found to possess excellent catalytic properties for numerous carbene transfer reactions. Computational studies, including the use of DFT calculations and molecular dynamics simulations, have been employed to help understand some important mechanistic aspects of heme carbene transfer reactions. This review summarizes advances in the computational results published in the following two areas: 1) the electronic and geometric structures of heme carbenes; spectroscopic properties; and effects of carbene substituent, porphyrin substituent, axial ligand, and spin state on heme carbene formation; and 2) mechanisms of heme carbenoid X−H (X=C, Si, B, N, S) insertions and cyclopropanation, including effects of heme carbene structural components and protein environment, as well as oxidation state and spin state. A brief outlook of future development is also addressed.  相似文献   

14.
15.
自组装单分子膜在电化学电子转移过程中的应用   总被引:4,自引:0,他引:4  
综述了自组装单分子膜作为模型体系在电化学电极过程中长程电子转移方面应用的一些重要研究成果。重点介绍了电子转移距离、电活性中心的微环境、膜表面分子的设计和状态等因素对长程电子转移的影响情况。展望了该领域今后的发展方向。  相似文献   

16.
The complexes formed between the flavoenzyme ferredoxin–NADP+ reductase (FNR; NADP+=nicotinamide adenine dinucleotide phosphate) and its redox protein partners, ferredoxin (Fd) and flavodoxin (Fld), have been analysed by using dynamic force spectroscopy through AFM. A strategy is developed to immobilise proteins on a substrate and AFM tip to optimise the recognition ability. The differences in the recognition efficiency regarding a random attachment procedure, together with nanomechanical results, show two binding models for these systems. The interaction of the reductase with the natural electron donor, Fd, is threefold stronger and its lifetime is longer and more specific than that with the substitute under iron‐deficient conditions, Fld. The higher bond probability and two possible dissociation pathways in Fld binding to FNR are probably due to the nature of this complex, which is closer to a dynamic ensemble model. This is in contrast with the one‐step dissociation kinetics that has been observed and a specific interaction described for the FNR:Fd complex.  相似文献   

17.
18.
This article completes our comprehensive understanding of the electron transport properties of our original π‐conjugated redox‐active molecular wires comprising Fe bridged by p‐phenylene linkers (tpy=2,2′:6′,2′′‐terpyridine). The Fe(tpy)2 oligomer wires comprise three types of tpy ligands: the anchor tpy ligand ( A series) makes a junction between the wire and electrode, the bridging bis‐tpy ligand ( L series) connects the Fe(tpy)2 units, and the terminal tpy ligand ( T series) possesses a redox site as a probe for the long‐range electron transport ability. Taking advantage of the precise tunability of the composition of the Fe(tpy)2 oligomer wires, thus far we investigated how A and L impacted on the electron‐transport ability. The excellent long‐range electron transport ability with ultrasmall attenuation constants (βd, 0.002 Å?1 as the minimum) depends on L significantly [Chem. Asian J. 2009 , 4, 1361], whereas A is unrelated to the βd value, but influences the zero‐distance electron‐transfer rate constant, ket0 [J. Am. Chem. Soc. 2010 , 132, 4524]. Herein we study the influence of terminal ligand T x (x=1–3). βd is independent of T , however, T3 , with a cyclometallated Ru complex as the redox site, gives rise to a ket0 value greater than T1 and T2 with ferrocene. This series of simple but definitive conclusions indicates that we have reached the stage of being able to precisely design molecular wires to attain desirable single‐molecule electron conduction.  相似文献   

19.
Graphite electrodes modified with redox‐polymer‐entrapped yeast cells were investigated with respect to possible electron‐transfer pathways between cytosolic redox enzymes and the electrode surface. Either wild‐type or genetically modified Hansenula polymorpha yeast cells over‐expressing flavocytochrome b2 (FC b2) were integrated into Os‐complex modified electrodeposition polymers. Upon increasing the L ‐lactate concentration, an increase in the current was only detected in the case of the genetically modified cells. The overexpression of FC b2 and the related amplification of the FC b2/L ‐lactate reaction cycle was found to be necessary to provide sufficient charge to the electron‐exchange network in order to facilitate sufficient electrochemical coupling between the cells, via the redox polymer, to the electrode. The close contact of the Os‐complex modified polymer to the cell wall appeared to be a prerequisite for electrically wiring the cytosolic FC b2/L ‐lactate redox activity and suggests the critical involvement of a plasma membrane redox system. Insights in the functioning of whole‐cell‐based bioelectrochemical systems have to be considered for the successful design of whole‐cell biosensors or microbial biofuel cells.  相似文献   

20.
Molecules capable of accepting and storing multiple electrons are crucial components of artificial photosynthetic systems designed to drive catalysts, such as those used to reduce protons to hydrogen. ExBox4+, a boxlike cyclophane comprising two π‐electron‐poor extended viologen units tethered at both ends by two p‐xylylene linkers, has been shown previously to accept an electron through space from a photoexcited guest. Herein is an investigation of an alternate, through‐bond intramolecular electron‐transfer pathway involving ExBox4+ using a combination of transient absorption and femtosecond stimulated Raman spectroscopy (FSRS). Upon photoexcitation of ExBox4+, an electron is transferred from one of the p‐xylylene linkers to one of the extended viologen units in ca. 240 ps and recombines in ca. 4 ns. A crystal structure of the doubly reduced species ExBox2+ was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号