首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

2.
High-performance counter electrodes for dye-sensitized solar cells (DSSCs) are fabricated with platinum-nickel oxide (Pt-NiO) nanosheets as catalytic materials. Firstly, the Pt-Ni nanosheets are synthesized via galvanic replacement reaction between pre-synthesized Ni nanosheets and an aqueous H2PtCl6 solution. Secondly, after thermal treatment in air, the Pt-Ni alloys are turned to Pt-NiO nanosheets. The related data of cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization reveal that Pt-NiO counter electrodes show highly catalytic activity and low charge transfer resistance. The DSSC with Pt-NiO counter electrode exhibits power conversion efficiency (PCE) of 8.40 %, which is lower than that of the DSSC containing commercial available Pt counter electrode (9.15 %) under full sunlight illumination (100 mW cm?2, AM1.5G). However, owing to the extremely high transparency of Pt-NiO counter electrode, when putting an Ag mirror behind the back side of the DSSC, the reflected light can bring great enhanced PCE (11.27 %).  相似文献   

3.
With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye‐sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non‐uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost‐effective DSSC is also comparable to that of noble metal Pt‐based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS‐CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3?.  相似文献   

4.
A surfactant‐stabilized coordination strategy is used to make two‐dimensional (2D) single‐atom catalysts (SACs) with an ultrahigh Pt loading of 12.0 wt %, by assembly of pre‐formed single Pt atom coordinated porphyrin precursors into free‐standing metal–organic framework (MOF) nanosheets with an ultrathin thickness of 2.4±0.9 nm. This is the first example of 2D MOF‐based SACs. Remarkably, the 2D SACs exhibit a record‐high photocatalytic H2 evolution rate of 11 320 μmol g?1 h?1 via water splitting under visible light irradiation (λ>420 nm) compared with those of reported MOF‐based photocatalysts. Moreover, the MOF nanosheets can be readily drop‐casted onto solid substrates, forming thin films while still retaining their photocatalytic activity, which is highly desirable for practical solar H2 production.  相似文献   

5.
Although two‐dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high‐yield preparation of solution‐processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, Tix Ta1−x Sy Oz (x =0.71, 0.49, and 0.30), from Tix Ta1−x S2 precursors. The nanosheet exhibits strong absorbance in the near‐infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid‐conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

6.
A highly active FeSe2 electrocatalyst for durable overall water splitting was prepared from a molecular 2Fe‐2Se precursor. The as‐synthesized FeSe2 was electrophoretically deposited on nickel foam and applied to the oxygen and hydrogen evolution reactions (OER and HER, respectively) in alkaline media. When used as an oxygen‐evolution electrode, a low 245 mV overpotential was achieved at a current density of 10 mA cm−2, representing outstanding catalytic activity and stability because of Fe(OH)2/FeOOH active sites formed at the surface of FeSe2. Remarkably, the system is also favorable for the HER. Moreover, an overall water‐splitting setup was fabricated using a two‐electrode cell, which displayed a low cell voltage and high stability. In summary, the first iron selenide material is reported that can be used as a bifunctional electrocatalyst for the OER and HER, as well as overall water splitting.  相似文献   

7.
Two novel main chain polymeric metal complexes containing 8‐hydroxyquinoline europium complexes and phenylethyl or fluorene units: 1,4‐Dioctyloxy‐2,5‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐benzene Eu(III) (3) and 2,7‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐9,9′‐diocthylfluorene Eu(III) (4) with donor–acceptor‐π‐conjugated structure (D‐π‐A) have been synthesized and investigated as dye sensitizers for dye‐sensitized solar cells dyes (DSSCs). They have been determined and studied by FT‐IR, TGA, DSC, GPC, Elemental analysis, UV–vis absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and application in dye‐sensitized solar cells (DSSCs) as dye sensitizers. On the basis of optimized dye and molecular structure, they have shown solar‐to‐electricity conversion efficiency 2.25% for 3 (Jsc = 4.77 mA cm?2, Voc = 630 mV, FF = 0.75) and 3.04% for 4 (Jsc = 6.33 mA cm?2, Voc = 640 mV, FF = 0.75), under the illumination of AM1.5G, 100 mW/cm2. The IPCE of 3 and 4 are 30% and 46% at 400 nm, respectively. Besides, they showed good stabilities with thermal decomposition temperatures at 280 °C and 225 °C, respectively, which are suitable for DSSCs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1943–1951, 2010  相似文献   

8.
A new‐type of donor–acceptor π‐conjugated (D‐π‐A) fluorescent dyes NI3 – NI8 with a pyridine ring as electron‐withdrawing‐injecting anchoring group have been developed and their photovoltaic performances in dye‐sensitized solar cells (DSSCs) are investigated. The short‐circuit photocurrent densities and solar energy‐to‐electricity conversion yields of DSSCs based on NI3 – NI8 are greater than those for the conventional D‐π‐A dye sensitizers NI1 and NI2 with a carboxyl group as the electron‐withdrawing anchoring group. The IR spectra of NI3 – NI8 adsorbed on TiO2 indicate the formation of coordinate bonds between the pyridine ring of dyes NI3 – NI8 and the Lewis acid sites (exposed Tin+ cations) of the TiO2 surface. This work demonstrates that the pyridine rings of D‐π‐A dye sensitizers that form a coordinate bond with the Lewis acid site of a TiO2 surface are promising candidates as not only electron‐withdrawing anchoring group but also electron‐injecting group, rather than the carboxyl groups of the conventional D‐π‐A dye sensitizers that form an ester linkage with the Brønsted acid sites of the TiO2 surface.  相似文献   

9.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

10.
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics.  相似文献   

11.
Dipolar metal‐free sensitizers (D‐π‐A; D=donor, π=conjugated bridge, A=acceptor) consisting of a dithiafulvalene (DTF) unit as the electron donor, a benzene, thiophene, or fluorene moiety as the conjugated spacer, and 2‐cyanoacrylic acid as the electron acceptor have been synthesized. Dimeric congeners of these dyes, (D‐π‐A)2, were also synthesized through iodine‐induced dimerization of an appropriate DTF‐containing segment. Dye‐sensitized solar cells (DSSCs) with the new dyes as the sensitizers have cell efficiencies that range from 2.11 to 5.24 %. In addition to better light harvesting, more effective suppression of the dark current than the D‐π‐A dyes is possible with the (D‐π‐A)2 dyes.  相似文献   

12.
This article reports the fabrication of Acid Violet 34 (AV34)/nickel hydroxide nanosheets ultrathin film on the glassy carbon electrode (GCE) via the electrostatic layer‐by‐layer (LBL) technique, and its electrocatalytic oxidation for glucose was demonstrated. UV‐vis absorption and electrochemical impedance spectra indicate the uniform deposition of the LBL film, with a continuous and smooth film surface observed by SEM and AFM. The electrochemical performance of the ultrathin film was studied by cyclic voltammetry and chronoamperometry. The (AV34/Ni(OH)2)5 ultrathin film modified electrode displays a fast direct electron transfer attributed to the Ni2+/Ni3+ redox couple as well as remarkable electrocatalytic activity towards the oxidation of glucose. The linear response was obtained in the range 0.5–13.5 mM (R=0.9994) with a low detection limit (14 µM), high sensitivity (25.9 µA mM?1 cm?2), rapid response (less than 1 s) and excellent anti‐interference properties to the species including ascorbic acid (AA), uric acid (UA), acetamidophenol (AP) and structurally related sugars. Therefore, the AV34/Ni(OH)2 ultrathin film can be potentially used as a feasible electrochemical sensor for the determination of glucose.  相似文献   

13.
Two novel side chain polymeric metal complexes (PFT‐Cd and PFT‐Zn) have been designed, synthesized, and characterized. These polymers were found to be good thermally stable and high glass transitions temperature, which indicate that these polymers could be applied as photovoltaic materials for dye‐sensitized solar cells (DSSCs). The obtained polymers exhibited good photovoltaic property. The DSSCs based on the PFT‐Cd and PFT‐Zn exhibited a maximum solar‐to‐electricity conversion efficiency (η) up to 3.37% (Jsc = 7.27 mA/cm2, Voc = 0.67 V, and FF = 0.69) and 3.01% (Voc = 0.72 V, Jsc = 6.10 mA/cm2, FF = 0.69) under simulated AM 1.5 G solar irradiation (90–95 mW/cm2). The result shows that these novel materials are suitable for the dye‐sensitized solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A new class of dye‐sensitized solar cells (DSSCs) using the hemicage cobalt‐based mediator [Co(ttb)]2+/3+ with the highly preorganized hexadentate ligand 5,5′′,5′′′′‐((2,4,6‐triethyl benzene‐1,3,5‐triyl)tris(ethane‐2,1‐diyl))tri‐2,2′‐bipyridine (ttb) has been fully investigated. The performances of DSSCs sensitized with organic D –π–A dyes utilizing either [Co(ttb)]2+/3+ or the conventional [Co(bpy)3]2+/3+ (bpy=2,2′‐bipyridine) redox mediator are comparable under 1000 W m?2 AM 1.5 G illumination. However, the hemicage complexes exhibit exceptional stability under thermal and light stress. In particular, a 120‐hour continuous light illumination stability test for DSSCs using [Co(ttb)]2+/3+ resulted in a 10 % increase in the performance, whereas a 40 % decrease in performance was found for [Co(bpy)3]2+/3+ electrolyte‐based DSSCs under the same conditions. These results demonstrate the great promise of [Co(ttb)]2+/3+ complexes as redox mediators for efficient, cost‐effective, large‐scale DSSC devices.  相似文献   

15.
Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.  相似文献   

16.
A new type of semitransparent SnS2 nanosheet (NS) films were synthesized using a simple and environmentally friendly solution‐processed approach, which were subsequently used as a counter electrode (CE) alternative to the noble metal Pt for triiodide reduction in dye‐sensitized solar cells (DSSCs). The resultant SnS2‐based CE with a thickness of about 300 nm exhibited excellent electrochemical catalytic activity for catalyzing the reduction of triiodide and demonstrated comparable power conversion efficiency of 7.64 % with that of expensive Pt‐based CE in DSSCs (7.71 %). When functionalized with a small amount of carbon nanoparticles, the SnS2 NS‐based CE showed even better performance of 8.06 % than Pt under the same conditions. Considering the facile fabrication method, optical transparency, low cost, and remarkable catalytic property, this study on SnS2 NSs may shed light on the large‐scale production of electrocatalytic electrode materials for low‐cost photovoltaic devices.  相似文献   

17.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

18.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

19.
运用连续吸附反应法和化学腐蚀-沉积法,用ZnO/FTO(氟掺杂氧化锡)多孔纳米片为模板,制备了TiO2/FTO多孔纳米片。研究了吸附次数对形貌、光散射性能和染料敏化太阳电池性能的影响。最佳吸附次数为30,由此得到的太阳能电池的效率、短路电流密度Jsc、开路电压Voc和填充因子FF分别为:5.57%、9.26mA·cm-2、0.835V和72.04%。这个效率略高于P25(5.32%),但远高于ZnO(2.41%)。  相似文献   

20.
Anatase TiO2 nanorods with large specific surface areas and high crystallinity have been synthesized by surfactant‐free hydrothermal treatment of water‐soluble peroxotitanium acid (PTA). X‐ray diffraction and TEM analysis showed that all TiO2 nanorods derived from PTA in different hydrothermal processes were in the anatase phase, and high aspect ratio TiO2 nanorods with chain‐shaped structures were formed at 150 °C for 24 h by oriented growth. The nanorods were fabricated as photoanodes for high‐efficiency dye‐sensitized solar cells (DSSCs). DSSCs fabricated from the chain‐shaped TiO2 nanorods gave a highest short‐circuit current density of 14.8 mA cm?2 and a maximum energy conversion efficiency of 7.28 %, as a result of the presence of far fewer surface defects and grain boundaries than are present in commercial P25 TiO2 nanoparticles. Electrochemical impedance spectroscopy also confirmed that DSSCs based on the TiO2 nanorods have enhanced electron transport properties and a long electron lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号