首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new dioxomolybdenum (VI) complex with tridentate hydrazone Schiff base ligand (H2L) derived from 2‐hydroxy‐5‐nitrobenzaldehyde and benzhydrazide was synthesized and designated as [MoO2L (DMF)]·2H2O. The Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) nanocatalyst was successfully prepared by grafting H2L ligand on modified Fe3O4 nanoparticles followed by reacting with MoO2 (acac)2. The complex and nanocatalyst were characterized by various techniques such as elemental analysis, mass, FT‐IR, UV–Vis, 1H NMR, 13C{1H}‐NMR, TGA, XRD, XPS, TEM, SEM and VSM. The catalytic activity of [MoO2L (DMF)]2H2O and Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) were evaluated for the oxidation of various alkenes (cyclooctene, norbornene, cyclohexene, styrene and α‐methyl styrene) in the presence of tert‐butylhydroperoxide as oxidant. The results revealed that the catalysts were especially efficient for oxidation of cyclooctene and norbornene with 100% selectivity towards corresponding epoxide product. Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) showed higher catalytic activity, shorter reaction time and higher turnover number (TON) compared with homogeneous complex [MoO2L (DMF)]·2H2O. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in activity were other advantages of the nanocatalyst.  相似文献   

2.
A new NC palladacycle was synthesized and supported on cucurbit[6]uril (CB[6]). The CB[6]‐supported palladium was used as an efficient nanocatalyst for the Suzuki reaction. In these reactions various aryl halides were reacted with arylboronic acids in H2O–EtOH at both room temperature and 40 °C. The obtained Pd nanocatalyst exhibited excellent reactivity and stability in C ? C bond formation, which confirms that the catalyst is a completely active heterogeneous species. The Pd nanocatalyst was characterized using X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Supported Pt and Pd are most commonly used for oxidation catalysts. They have similar and different characteristics for deactivation factors. The catalytic activity of Pt and Pd catalysts supported on ??-Al2O3 was studied in the presence and absence of H2O and SO2 during CO oxidation under simulated conditions of diesel exhaust gas. Without the addition of H2O and SO2 to the feed gas, Pd/Al2O3 had a superior catalytic activity compared to Pt/Al2O3. The addition of H2O to the feed gas strongly and negligibly affected the activity of Pd and Pt, respectively, while the addition of SO2 to the feed gas had a strong poisoning effect on the catalytic activity of both Pt and Pd catalysts. Although being the most active, Pd catalysts exhibited a strong sensitivity to water and sulfur-containing compounds. Fe was added to the Pt and Pd catalysts to introduce sulfur resistance. The addition of Fe enhanced the activity of the catalysts by suppressing the phase transition of Al2O3 to Al2(SO4)3 and by hindering metal sintering.  相似文献   

4.
In this paper, rGO/Pd–Fe3O4@PPy as an efficient stable nanocomposite was synthesized. To understand the synergetic effects of rGO, Pd, Fe3O4 and PolyPyrrole, the performance of rGO/Pd–Fe3O4@PPy as a heterogeneous recyclable nanocatalyst in the green synthesis of C‐C and C‐O coupling products, as well as different conditions are studied. Synthesized rGO/Pd–Fe3O4@PPy was characterized by FT‐IR, XRD, FE‐SEM, EDS, TGA and AFM analysis. Best results are obtained under sonication in H2O for C‐C coupling and by ball‐milling for C‐O coupling. The benefits of this method include: green solvents and conditions, absence of external base, low reaction times with high yield and easy work‐up method.  相似文献   

5.
Binary Pd–polyoxometalates [Pd(dpa)2]3[PW12O40]2 ? 12 DMSO ( 2 ), [Pd(dpa)2]3[PMo12O40]2 ? 12 DMSO ? 2 H2O ( 3 ), and [Pd(dpa)(DMSO)2]2[HPMo10V2O40] ? 4 DMSO ( 4 ) were synthesized by reaction of [Pd(dpa)(OAc)2] ? 2 H2O ( 1 ; dpa=2,2′‐dipyridylamine) with three Keggin‐type polyoxometalates and fully characterized by single‐crystal and powder XRD analyses, IR spectroscopy, and elemental analyses. The synthesis is facile and straightforward, and the complicated ligand‐modification procedure often used in the traditional charge‐transfer method can be omitted. In 2 – 4 , Pd complexes and polyoxometalate anions are coupled through electrostatic interaction. Compound 4 is more active than the other three compounds in the selective aerobic oxidation of alcohols at ambient pressure. Interestingly, during catalytic recycling of compound 4 , unprecedented ternary Pd–V–polyoxometalate [Pd(dpa)2{VO(DMSO)5}2][PMo12O40]2 ? 4 DMSO ( 5 ), which was captured and characterized by single‐crystal XRD, proved to be the true active species and showed high catalytic activity for the selective aerobic oxidation of aromatic alcohols (98.1–99.8 % conversion, 91.5–99.1 % selectivity). Moreover, on the basis of control experiments and EPR and UV/Vis spectra, a plausible reaction mechanism for the oxidation of alcohols catalyzed by 5 was proposed.  相似文献   

6.
Palladium immobilized magnetic nanoFe3O4@hyperbranched polyethylenimine (Fe3O4@HPEI.Pd) was prepared according to a simple and cost effective pathway and it was employed as a new efficient and selective organic–inorganic hybrid nanocatalyst for the aqueous oxidation of primary and secondary alcohols to their corresponding products in good yields applying oxone (potassium hydrogen monopersulfate) and H2O2 as an oxidant at room temperature. Moreover, the catalytic system was reused at least 13 times without significant loss of activity. The complete characterization of this efficient nanocatalyst was investigated by FTIR, UV–Vis, TEM, SEM, XRD, TGA, VSM, ICP and EDX techniques.  相似文献   

7.
Various monospiro‐2‐amino‐4H‐pyran derivatives have been synthesized in high yields (via three‐component coupling of ninhydrin or different isatins with malononitrile and 1,3‐dicarbonyl compounds) in the presence of catalytic amount of propane‐1‐sulfonic acid‐modified magnetic hydroxyapatite nanoparticles in H2O. Due to easy magnetic removal of nanocatalyst and applying of H2O as solvent, this protocol enhanced product purity, and promised economic as well as environmental benefits, exemplifying a waste‐free chemistry. More importantly, the catalyst could be easily recycled for more than five times without loss of activity.  相似文献   

8.
In this work, an easily obtained procedure was successfully implemented to prepare novel palladium nanoparticles decorated on triethanolammonium chloride ionic liquid‐functionalized TiO2 nanoparticles [TiO2/IL‐Pd]. Different methods were carried out for characterizations of the synthesized nanocatalyst (HR‐TEM, XPS, XRD, FE‐SEM, EDX, FT‐IR and ICP). TiO2/IL‐Pd indicated good catalytic activity for the Suzuki–Miyaura cross‐coupling reaction of arylboronic acid with different aryl halides in aqueous media at ambient temperature. The recycled catalyst was investigated with ICP to amount of Pd leaching after 6 times that had diminished slightly, Thus, was confirmed that the nanocatalyst has a good sustainability for C–C Suzuki–Miyaura coupling reaction. The catalyst can be conveniently separated by filtration of the reaction mixture and reused for 6 times without significant loss of its activity. It supplies an environmentally benign alternative path to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   

9.
In this study, magnetically nanoparticles of CuFe2O4@SiO2@PTMS@Tu@Ni(II) as novel and reusable catalyst were prepared. Synthesis of the Ni (II)‐nanocatalyst was carried out through the complexation of Ni(OAc)2·4H2O with the immobilized thiourea on silica‐layered CuFe2O4. The prepared nanocomposite system was then characterized using SEM, EDX, XRD, VSM, ICP‐OES, Raman, UV–Vis and FT‐IR analyses. Catalytic activity of the Ni(II)‐CuFe2O4 system was investigated towards rapid reduction of aromatic nitro compounds to arylamines with sodium borohydride as well as one‐pot reductive‐acetylation of nitroarenes to acetanilides with NaBH4/Ac2O system without the isolation of intermediate arylamines. All reactions were carried out in H2O within 3–7 min to afford the products arylamines/acetanilides in high to excellent yields. Reusability of the Ni(II)‐nanocatalyst was examined for seven consecutive cycles without the significant loss of the catalytic activity.  相似文献   

10.
A Schiff base ligand derived from 5-bromo-2-hydroxybenzaldehyde and 2,2′-dimethylpropylenediamine (H2L) and its corresponding dioxomolybdenum(VI) complex (Mo(O)2L) has been synthesized and characterized by spectroscopic methods. The adsorption of Mo(O)2L on the surface of silica-coated magnetite nanoparticles via hydrogen bonding led to the formation of (α-Fe2O3)–MCM-41–Mo(O)2L as a heterogeneous catalyst. FT-IR and atomic absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize and investigate the new nanocatalyst. A practical catalytic method for the efficient and highly selective oxidation of a wide range of olefins with hydrogen peroxide and tert-butyl hydroperoxide in ethanol over the prepared molybdenum nanocatalyst was investigated. Under reflux conditions, the oxidation of cyclooctene with tert-butyl hydroperoxide or hydrogen peroxide led to the formation of epoxide as the sole product. The catalyst was reused at least six times without a significant decrease in catalytic activity or selectivity, and without detectable leaching of the catalyst.  相似文献   

11.
Oxovanadium(IV) immobilized on Fe3O4@S‐ABEN is reported as a highly efficient nanocatalyst for the oxidation of sulfides and oxidative coupling of thiols (using H2O2 as green oxidant), the products of which are obtained in high to excellent yields. The products can be separated by a simple extraction with organic solvent and the catalyst is highly efficient, especially in terms of selectivity of desired product. The catalytic system can be recycled and reused without significant loss of catalytic activity.  相似文献   

12.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   

13.
The development of active, selective, and robust catalysts is a key issue in promoting the practical application of hydrazine monohydrate (N2H4 ? H2O) as a viable hydrogen carrier. Herein, the synthesis of a supported Ni–Pt bimetallic nanocatalyst on mesoporous ceria by a one‐pot evaporation‐induced self‐assembly method is reported. The catalyst exhibits exceptionally high catalytic activity, 100 % selectivity, and satisfactory stability in promoting H2 generation from an alkaline solution of N2H4 ? H2O at moderate temperatures. For example, the Ni60Pt40/CeO2 catalyst enabled complete decomposition of N2H4 ? H2O to generate H2 at a rate of 293 h?1 at 30 °C in the presence of 2 M NaOH, which compares favorably with the reported N2H4 ? H2O decomposition catalysts. Phase/structural analysis by XRD, TEM, and Auger electron spectroscopy was conducted to gain insight into the excellent catalytic performance of the Ni–Pt/CeO2 catalyst.  相似文献   

14.
Herein, we report a facile surfactant‐assisted solvothermal synthetic method to prepare nearly monodisperse spherical CeO2 nanocrystals. A good control of the size of CeO2 nanocrystals in the range of 100–500 nm was achieved by simply varying the synthetic parameters such as reaction time, volume ratio of ethanol to water (R), molar ratio of PVP, and concentration of Ce(NO3)3?6 H2O in solution. A possible mechanism for the growth of spherical CeO2 nanocrystals is proposed. The obtained CeO2 nanocrystals with a surface area of up to 47 m2g?1 were then employed as a catalyst support. By loading Au‐Pd nanoparticles (about 3 wt. %) onto the CeO2 support, an Au‐Pd/CeO2 catalyst was prepared that exhibited high catalytic activity for HCHO oxidation. At the low temperature of 50 °C, the percentage of HCHO conversion was 100 %, suggesting potential applications in preferential oxidation and other catalytic reactions. These Au‐Pd/CeO2 catalysts may also find applications in indoor formaldehyde decontamination and industrial catalysis. The facile solvothermal method can be extended to the preparation of other metal oxide nanocrystals and provides guidance for size‐ and morphology‐controlled synthesis.  相似文献   

15.
Insight into how H2O is oxidized to O2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar‐to‐fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru‐based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high‐resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non‐innocent behavior, in which metal–ligand cooperation is an important part during the four‐electron oxidation of H2O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non‐innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2O.  相似文献   

16.
The reactions of phenols with diphenylsilane are catalysed by palladium(II) catalysts such as Pd(TMEDA)Cl2 (TMEDA = tetramethylethylenediamine), Pd(DEED)Cl2 (DEED = N,N′‐diethylethylenediamine), Pd(TEEDA)Cl2 (TEEDA = N,N′‐tetraethylethylenediamine) or PdCl2 to form hydrated silanols with molecular formula Ph2Si(OR)OH·nH2O (when R = C6H5, n = 3; when R = p‐CH3C6H4 or o‐CH3C6H4, n = 1). The reaction of hydroquinone with diphenylsilane in the presence of catalytic amounts of Pd(TMEDA)Cl2 forms an Si–O‐bonded hydrated aggregate of composition [(C6H5)2Si(OC6H4O).0.5H20] n. p‐Benzoquinone reacted with diphenylsilane in the presence of a catalytic amount of Pd(TMEDA)Cl2 and the reaction proceeded via a multiple pathway involving quinhydrone as an intermediate charge‐transfer complex which reacted further with diphenylsilane to give a linear siloxane. Copyright ­© 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Traditional hard‐template methods for the preparation of mesoporous carbon structures have been well developed, but there are difficulties associated with complete filling of the organic precursors in ordered mesochannels and exact replication of the templates. Herein, mesoporous carbon nanorods (meso‐CNRs) were synthesized through thermal condensation of furfuryl alcohol followed by the nano‐confined decomposition of polyfurfuryl alcohol in silica nanotubes (SiO2 NTs) with porous shells. Limited and slow release of gaseous water through the porous shells and finite polyfurfuryl precursor inside silica nanotubes are responsible for the formation of the mesoporous structures. Nitrogen can be doped into the meso‐CNRs by adding guanidine hydrochloride to the precursors. The nitrogen dopant not only stabilizes the ultrasmall and active Pd nanocatalyst in the meso‐CNRs but also increases the electron density of Pd and accelerates the dissociation of H2, both of which increase the catalytic activity of the Pd catalyst in hydrogenation reactions.  相似文献   

18.
S ‐Benzylisothiourea complex of palladium supported on modified Fe3O4 magnetic nanoparticles (Pd‐SBTU@Fe3O4) is reported for carbon–carbon coupling through the Suzuki coupling reaction. Also, the synthesis of polyhydroquinoline derivatives is reported in the presence of Pd‐SBTU@Fe3O4 as nanocatalyst. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. The heterogeneity of Pd‐SBTU@Fe3O4 was studied using hot filtration.  相似文献   

19.
Herein, we have prepared a new Cu(II) Schiff base complex supported onto the surface of modified Fe3O4 nanoparticles as highly stable, heterogeneous and magnetically recyclable nanocatalyst for the selective aerobic oxidation of different alcohols. The structure, morphology, chemical composition and magnetic property of the nanocatalyst and its precursors were characterized using FT‐IR, TGA, AAS, ICP‐AES, XRD, SEM, EDS, VSM and N2 adsorption–desorption analyses. Characterization results exhibited the uniform spherical morphology for nanocatalyst and its precursors. A promising eco‐friendly method with short reaction time and high conversion and selectivity for oxidation of various primary and secondary alcohols under O2 atmosphere condition was achieved. The synthesized nanocatalyst could be recovered easily by applying an external magnetic field and reused for least eight subsequent reaction cycles with only negligible deterioration in catalytic performance.  相似文献   

20.
The activation of O2 is a key step in selective catalytic aerobic oxidation reactions mediated by transition metals. The bridging trinuclear palladium species, [(LPdII)33‐O)2]2+ (L=2,9‐dimethylphenanthroline), was identified during the [LPd(OAc)]2(OTf)2‐catalyzed aerobic oxidation of 1,2‐propanediol. Independent synthesis, structural characterization, and catalytic studies of the trinuclear compound show that it is a product of oxygen activation by reduced palladium species and is a competent intermediate in the catalytic aerobic oxidation of alcohols. The formation and catalytic activity of the trinuclear Pd3O2 species illuminates a multinuclear pathway for aerobic oxidation reactions catalyzed by Pd complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号