首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ab initio calculations have been performed on a series of complexes formed between halogen-containing molecules and ammonia to gain a deeper insight into the nature of halogen bonding. It appears that the dihalogen molecules form the strongest halogen-bonded complexes with ammonia, followed by HOX; the charge-transfer-type contribution has been demonstrated to dominate the halogen bonding in these complexes. For the complexes involving carbon-bound halogen molecules, our calculations clearly indicate that electrostatic interactions are mainly responsible for their binding energies. Whereas the halogen-bond strength is significantly enhanced by progressive fluorine substitution, the substitution of a hydrogen atom by a methyl group in the CH(3)X...NH(3) complex weakened the halogen bonding. Moreover, remote substituent effects have also been noted in the complexes of halobenzenes with different para substituents. The influence of the hybridization state of the carbon atom bonded to the halogen atom has also been examined and the results reveal that halogen-bond strengths decrease in the order HC triple bond CX > H(2)C=CHX approximately O=CHX approximately C(6)H(5)X > CH(3)X. In addition, several excellent linear correlations have been established between the interaction energies and both the amount of charge transfer and the electrostatic potentials corresponding to an electron density of 0.002 au along the R-X axis; these correlations provide good models with which to evaluate the electron-accepting abilities of the covalently bonded halogen atoms. Finally, some positively charged halogen-bonded systems have been investigated and the effect of the charge has been discussed.  相似文献   

3.
N‐Methylacetamide, a model of the peptide unit in proteins, is allowed to interact with CH3SH, CH3SCH3, and CH3SSCH3 as models of S‐containing amino acid residues. All of the minima are located on the ab initio potential energy surface of each heterodimer. Analysis of the forces holding each complex together identifies a variety of different attractive forces, including SH???O, NH???S, CH???O, CH???S, SH???π, and CH???π H‐bonds. Other contributing noncovalent bonds involve charge transfer into σ* and π* antibonds. Whereas some of the H‐bonds are strong enough that they represent the sole attractive force in several dimers, albeit not usually in the global minimum, charge‐transfer‐type noncovalent bonds play only a supporting role. The majority of dimers are bound by a collection of several of these attractive interactions. The SH???O and NH???S H‐bonds are of comparable strength, followed by CH???O and CH???S.  相似文献   

4.
We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys. 2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett. 2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants.  相似文献   

5.
An experimental and theoretical study of pressure broadening and pressure shift of HCO+ rotational lines perturbed by collisions with He is presented. Results are reported from measurements at 88 K for the lines j=4←3, 5←4 and 6←5 with frequencies ranging from 0.35 to 0.54 THz. Using a new CCSD(T)/aug‐cc‐pVQZ potential energy surface for the He–HCO+ interaction, the collisional line shape parameters are studied from fully quantum and semiclassical calculations. Results from the quantum treatment are in satisfactory agreement with experiments whereas the semiclassical approach can lead to appreciable differences. A study of the dependence of line width Γ and shift s as a function of the translational energy shows the presence of quantum oscillations. Calculations on a previous Hartree–Fock‐based potential energy surface lead to quite similar results for the collisional line shape parameters. Using a simplified version of the potential morphing method it is found that the line width Γ is particularly sensitive to the long‐range part of the potential energy surface. This also explains the success of the first line‐broadening calculations which date back to the 1950s.  相似文献   

6.
Pressure broadening and pressure shift of N2H+ rotational lines perturbed by collisions with He are studied for the first time using experiment and theory. Results are reported from measurements at 88 K for the rotational transitions ${j = 3 \leftarrow 2}$ , ${4 \leftarrow 3}$ , ${5 \leftarrow 4}$ and ${6 \leftarrow 5}$ with frequencies ranging from 0.28 to 0.56 THz. The agreement between experiment and theoretical data derived from close coupling calculations confirms the reliability of a theoretical framework used for state‐to‐state transition rates of interest in the interpretation of spectroscopic data from interstellar molecular clouds. The influence of hyperfine effects on shifts and widths of the rotational lines is discussed in detail. Although in principle possible, experiment and theoretical considerations lead to the conclusion that hyperfine effects only play a minor role.  相似文献   

7.
Covalent, ionic, or something new? A new interpretation of the topology of the electron density at the bond critical point is proposed to characterize covalent, ionic, and charge‐shift bonding from the density point of view (see figure). The topological properties of the density representation confirm the reality of charge‐shift bonds, in which the covalent contribution is weak or repulsive, and most of the bonding is due to the covalent–ionic resonance energy.

  相似文献   


8.
The nature of halogen bonding is examined via experimental and computational characterizations of a series of associates between electrophilic bromocarbons R? Br (R? Br=CBr3F, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3CN, etc.) and bromide anions. The [R? Br, Br?] complexes show intense absorption bands in the 200–350 nm range which follow the same Mulliken correlation as those observed for the charge‐transfer associates of bromide anions with common organic π‐acceptors. For a wide range of the associates, intermolecular R? Br???Br? separations decrease and intramolecular C? Br bond lengths increase proportionally to the Br?→R? Br charge transfer; and the energies of R? Br???Br? bonds are correlated with the linear combination of orbital (charge‐transfer) and electrostatic interactions. On the whole, spectral, structural and thermodynamic characteristics of the [R? Br, Br?] complexes indicate that besides electrostatics, the orbital (charge‐transfer) interactions play a vital role in the R? Br???Br? halogen bonding. This indicates that in addition to controlling the geometries of supramolecular assemblies, halogen bonding leads to electronic coupling between interacting species, and thus affects reactivity of halogenated molecules, as well as conducting and magnetic properties of their solid‐state materials.  相似文献   

9.
Molecules with multiple hydrogen bonding sites offer the opportunity to investigate competitive hydrogen bonding. Such an investigation can become quite interesting, particularly when the molecule of interest has neither lone‐pair electrons nor strongly acidic/basic groups. Phenylacetylene is one such molecule with three hydrogen bonding sites that cannot be ranked into any known hierarchical pattern. Herein we review the structures of several binary complexes of phenylacetylene investigated using infrared optical double‐resonance spectroscopy in combination with high‐level ab initio methods. The diversity of intermolecular structures formed by phenylacetylene with various reagents is remarkable. The nature of intermolecular interaction with various reagents is the result of a subtle balance between various configurations and competition between the electrostatic and dispersion energy terms, while trying to maximize the total interaction strength.  相似文献   

10.
The features of blue- and red-shifted electron acceptor-donor (ACH/B) hydrogen bonds have been compared by using quantum chemical calculations. The geometry, the interaction energy and the vibrational frequencies of both blue- (ACH=F3CH, Cl3CH with B=FCD3) and red-shifted (ACH=F3CH, Cl3CH with B=NH3 and ACH=CH3CCH with B=FCD3, NH3) complexes were obtained by using ab initio MP2(Full)/6-31+G(d,p) calculations with the a priori basis-set superposition error (BSSE) correction method. One-dimensional potential energy and dipole moment functions of the dimensionless normal coordinate Q1, corresponding to the CH stretching mode of ACH, have been compared for both types of complexes. Contributions of separate components of the interaction energy to the frequency shift and the effect of electron charge transfer were examined for a set of intermolecular distances by using the symmetry-adapted perturbation theory (SAPT) approach and natural bond orbitals (NBO) population analysis.  相似文献   

11.
Benchmark quality geometries and interaction energies for the prereactive halogen‐bonded complexes of dihalogens and ammonia, including hypothetical astatine containing dihalogens, have been produced via explicitly correlated coupled cluster methods. The application of local electron correlation partitioning reveals dispersion, electrostatics and ionic substitutions all contribute significantly to the interaction energy, with a linear relationship between the ionic substitutions and the degree of charge transfer. Potential energy curves for H3N???ClF show that as the relative orientations of the two subunits are manipulated appreciable interactions can be found at considerably angular displaced geometries, signifying lower directionality in halogen bonding than previously supposed.  相似文献   

12.
13.
The hydrogen bond represents a fundamental intermolecular interaction that binds molecules in vapor and liquid water. A crucial and debated aspect of its electronic structure and chemistry is the charge transfer (CT) accompanying it. Much effort has been devoted, in particular, to the study of the smallest prototype system, the water dimer, but even here results and interpretations differ widely. In this paper, we reassess CT in the water dimer by using charge‐displacement analysis. Besides a reliable estimate of the amount of CT (14.6 me) that characterizes the system, our study provides an unambiguous context, and very useful bounds, within which CT effects may be evaluated, crucially including the associated energy stabilization.  相似文献   

14.
Hydrogen bonding and halogen bonding are important non-covalent interactions that are known to occur in large molecular systems, such as in proteins and crystal structures. Although these interactions are important on a large scale, studying hydrogen and halogen bonding in small, gas-phase chemical species allows for the binding strengths to be determined and compared at a fundamental level. In this study, anion photoelectron spectra are presented for the gas-phase complexes involving bromide and the four chloromethanes, CH3Cl, CH2Cl2, CHCl3, and CCl4. The stabilisation energy and electron binding energy associated with each complex are determined experimentally, and the spectra are rationalised by high-level CCSD(T) calculations to determine the non-covalent interactions binding the complexes. These calculations involve nucleophilic bromide and electrophilic bromine interactions with chloromethanes, where the binding motifs, dissociation energies and vertical detachment energies are compared in terms of hydrogen bonding and halogen bonding.  相似文献   

15.
16.
Hybrid DFT/classical molecular dynamics of the long‐lived triplet excited state of [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) in aqueous solution is used to investigate the solvent‐mediated electron localization and dynamics in the triplet metal‐to‐ligand charge‐transfer (MLCT) state. Our studies reveal a solvent‐induced breaking of the coordination symmetry with consequent localization of the photoexcited electron on one or two bipyridine units for the entire length of our simulation, which amounts to several picoseconds. Frequent electronic “hops” between the ligands constituting the pair are observed with a characteristic time of approximately half a picosecond.  相似文献   

17.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

18.
Correlated ab initio as well as semiempirical quantum chemical calculations and molecular dynamics simulations were used to study the intercalation of cationic ethidium, cationic 5‐ethyl‐6‐phenylphenanthridinium and uncharged 3,8‐diamino‐6‐phenylphenanthridine to DNA. The stabilization energy of the cationic intercalators is considerably larger than that of the uncharged one. The dominant energy contribution with all intercalators is represented by dispersion energy. In the case of the cationic intercalators, the electrostatic and charge‐transfer terms are also important. The ΔG of ethidium intercalation to DNA was estimated at ?4.5 kcal mol?1 and this value agrees well with the experimental result. Of six contributions to the final free energy, the interaction energy value is crucial. The intercalation process is governed by the non‐covalent stacking (including charge‐transfer) interaction while the hydrogen bonding between the ethidium amino groups and the DNA backbone is less important. This is confirmed by the evaluation of the interaction energy as well as by the calculation of the free energy change. The intercalation affects the macroscopic properties of DNA in terms of its flexibility. This explains the easier entry of another intercalator molecule in the vicinity of an existing intercalation site.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号