首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a series of dinuclear gold hydroxide complexes has been achieved. These complexes of type [{Au(IPr)}2(μ‐OH)]X (X=BF4, NTf2, OTf, FABA, SbF6; IPr=2,6‐bis(disopropylphenyl)imidazol‐2‐ylidene; NTf2=bis(trifluoromethanesulfonyl)imidate; OTf=trifluoromethanesulfonate; FABA=tetrakis(pentafluorophenyl)borate) are easily formed in the presence of water and prove highly efficient in the catalytic hydration of nitriles. Their facile formation in aqueous media suggests they are of relevance in gold‐catalyzed reactions involving water. Additionally, a series of [Au(IPr)(NCR)][BF4] (R=alkyl, aryl) complexes was synthesized as they possibly occur as intermediates in the catalytic reaction mechanism. 1H and 13C NMR data as well as key bond lengths obtained by X‐ray diffraction studies are compared and reveal an interesting structure–activity relationship. The collected data indicate a negligible effect of the nature of the nitrile on the reactivity of [Au(L)(NCR)][X] complexes in catalysis.  相似文献   

2.
The use of a versatile N‐heterocyclic carbene (NHC) gold(I) hydroxide precatalyst, [Au(OH)(IPr)], (IPr=N,N′‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) permits the in situ generation of the [Au(IPr)]+ ion by simple addition of a Brønsted acid. This cationic entity is believed to be the active species in numerous catalytic reactions. 1H NMR studies in several solvent media of the in situ generation of this [Au(IPr)]+ ion also reveal the formation of a dinuclear gold hydroxide intermediate [{Au(IPr)}2(μ‐OH)], which is fully characterized and was tested in gold(I) catalysis.  相似文献   

3.
Coinage metal complexes of the N‐heterocyclic carbene–phosphinidene adduct IPr ? PPh (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were prepared by its reaction with CuCl, AgCl, and [(Me2S)AuCl], which afforded the monometallic complexes [(IPr ? PPh)MCl] (M=Cu, Ag, Au). The reaction with two equivalents of the metal halides gave bimetallic [(IPr ? PPh)(MCl)2] (M=Cu, Au); the corresponding disilver complex could not be isolated. [(IPr ? PPh)(CuOTf)2] was prepared by reaction with copper(I) trifluoromethanesulfonate. Treatment of [(IPr ? PPh)(MCl)2] (M=Cu, Au) with Na(BArF) or AgSbF6 afforded the tetranuclear complexes [(IPr ? PPh)2M4Cl2]X2 (X=BArF or SbF6), which contain unusual eight‐membered M4Cl2P2 rings with short cuprophilic or aurophilic contacts along the chlorine‐bridged M???M axes. Complete chloride abstraction from [(IPr ? PPh)(AuCl)2] was achieved with two equivalents of AgSbF6 in the presence of tetrahydrothiophene (THT) to form [(IPr ? PPh){Au(THT)}2][SbF6]2. The cationic tetra‐ and dinuclear complexes were used as catalysts for enyne cyclization and carbene transfer reactions.  相似文献   

4.
The competition between π‐ and dual σ,π‐gold‐activation modes is revealed in the gold(I)‐catalyzed heterocyclization of 1‐(o‐ethynylaryl)urea. A noticeable effect of various ligands in gold complexes on the choice of these activation modes is described. The cationic [Au(IPr)]+ (IPr=2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidene) complex cleanly promotes the π activation of terminal alkynes, whereas [Au(PtBu3)]+ favors intermediate σ,π species. In this experimental and mechanistic study, which includes kinetic and cross‐over experiments, several σ‐gold, σ,π‐gold, and other gold polynuclear reaction intermediates have been isolated and identified by NMR spectroscopy, X‐ray diffraction, or MALDI spectrometry. The ligand control in the simultaneous or alternative π‐ and σ,π‐activation modes is also supported by deuterium‐labeling experiments.  相似文献   

5.
We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L′)] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L′ = PCy3, or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh3)]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.  相似文献   

6.
We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and N-tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents. [Au(SIPr)Cbz] and [Au(IPr)(Cbz)] have higher triplet energy (ET) values (66.6 and 66.3 kcal mol−1, respectively) compared to commonly used iridium photosensitizers. These ET values permit the use of these gold complexes as sensitizers enabling energy transfer catalysis involving unprotected indole derivatives, a substrate class previously inaccessible with state-of-the-art Ir photocatalysts. The photosynthesis of unprotected tetracyclic spiroindolines via intramolecular [2 + 2] cycloaddition using our simple mononuclear gold sensitizer is readily achieved. Mechanistic studies support the involvement of triplet–triplet energy transfer (TTEnT) for both [2 + 2] photocycloadditions.

We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems.  相似文献   

7.
The Pd‐catalyzed reactions of 3‐chloro‐bodipy with R2PH (R=Ph, Cy) provide nonfluorescent bodipy–phosphines 3‐PR2–bodipy 3 a (R=Ph) and 3 b (R=Cy; quantum yield Φ<0.001). Metal complexes such as [AgCl( 3 b )] and [AuCl( 3 b )] were prepared and shown to display much higher fluorescence (Φ=0.073 and 0.096). In the gold complexes, the level of fluorescence was found to be qualitatively correlated with the electron density at gold. Consequently, the fluorescence brightness of [AuCl( 3 b )] increases when the chloro ligand is replaced by a weakly coordinating anion, whereas upon formation of the electron‐rich complex [Au(SR)( 3 b )] the fluorescence is almost quenched. Related reactions of [AuCl( 3 b )] with [Ag]ONf)] (Nf= nonaflate) and phenyl acetylenes enable the tracking of initial steps in gold‐catalyzed reactions by using fluorescence spectroscopy. Treatment of [AuCl( 3 b )] with [Ag(ONf)] gave the respective [Au(ONf)( 3 b )] only when employing more than 2.5 equivalents of silver salt. The reaction of the “cationic” gold complex with phenyl acetylenes leads to the formation of the respective dinuclear cationic [{( 3 b )Au}2(CCPh)]+ and an increase in the level of fluorescence. The rate of the reaction of [Au(ONf)( 3 b )] with PhCCH depends on the amount of silver salt in the reaction mixture; a large excess of silver salt accelerates this transformation. In situ fluorescence spectroscopy thus provides valuable information on the association of gold complexes with acetylenes.  相似文献   

8.
[{Rh(μ‐Cl)(H)2(IPr)}2] (IPr = 1,3‐bis‐(2,6‐diisopropylphenyl)imidazole‐2‐ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one‐pot three‐component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(μ‐Cl)(H)2(IPr)}2] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2)] (MesNH2 = 2,4,6‐trimethylaniline) and [RhCl(CO)2IPr]. The latter shows a very low catalytic activity while the former brought about reaction rates similar to those obtained with [{Rh(μ‐Cl)(H)2(IPr)}2]. Besides, complex [RhCl(CO)IPr(MesNH2)] reacts with an excess of amine and aldehyde to give [RhCl(CO)IPr{MesN?CHCH2CH(CH3)2}], which was postulated as the active species. A mechanism that clarifies the scarcely studied catalytic cycle of A3‐coupling reactions is proposed based on reactivity studies and DFT calculations.  相似文献   

9.
Gold–carbene complexes are essential intermediates in many gold‐catalyzed organic‐synthetic transformations. While gold–carbene complexes with direct, vinylogous, or phenylogous heteroatom substitution have been synthesized and characterized, the observation in the condensed phase of electronically non‐stabilized gold–carbenes has so far remained elusive. The sterically extremely shielded, emerald‐green complex [IPr**Au=CMes2]+[NTf2]? has now been synthesized, isolated, and fully characterized. Its absorption maximum at 642 nm, in contrast to 528 nm of the red‐purple carbocation [Mes2CH]+, clearly demonstrates that gold is more than just a “soft proton”.  相似文献   

10.
Methoxide abstraction from gold acetylide complexes of the form (L)Au[η1‐C≡CC(OMe)ArAr′] (L=IPr, P(tBu)2(ortho‐biphenyl); Ar/Ar′=C6H4X where X=H, Cl, Me, OMe) with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at −78 °C resulted in the formation of the corresponding cationic gold diarylallenylidene complexes [(L)Au=C=C=CArAr′]+ OTf in ≥85±5 % yield according to 1H NMR analysis. 13C NMR and IR spectroscopic analysis of these complexes established the arene‐dependent delocalization of positive charge on both the C1 and C3 allenylidene carbon atoms. The diphenylallenylidene complex [(IPr)Au=C=C=CPh2]+ OTf reacted with heteroatom nucleophiles at the allenylidene C1 and/or C3 carbon atom.  相似文献   

11.
Methoxide abstraction from gold acetylide complexes of the form (L)Au[η1‐C≡CC(OMe)ArAr′] (L=IPr, P(tBu)2(ortho‐biphenyl); Ar/Ar′=C6H4X where X=H, Cl, Me, OMe) with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at ?78 °C resulted in the formation of the corresponding cationic gold diarylallenylidene complexes [(L)Au=C=C=CArAr′]+ OTf? in ≥85±5 % yield according to 1H NMR analysis. 13C NMR and IR spectroscopic analysis of these complexes established the arene‐dependent delocalization of positive charge on both the C1 and C3 allenylidene carbon atoms. The diphenylallenylidene complex [(IPr)Au=C=C=CPh2]+ OTf? reacted with heteroatom nucleophiles at the allenylidene C1 and/or C3 carbon atom.  相似文献   

12.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

13.
The potential for coordination and H-transfer from Cp2MH2 (M=Zr, W) to gold(I) and gold(III) complexes was explored in a combined experimental and computational study. [(L)Au]+ cations react with Cp2WH2 giving [(L)Au(κ2-H2WCp2)]+ (L=IPr ( 1 ), cyclic (alkyl)(amino)carbene ( 2 ), PPh3 ( 3 ) and Dalphos-Me ( 4 ) [IPr=1,3-bis(diisopropylphenyl)imidazolylidene; Dalphos-Me=di(1-adamantyl)-2-(dimethylamino)phenyl-phosphine], while [Au(DMAP)2]+ (DMAP=p-dimethylaminopyridine) affords the C2-symmetric [Au(κ-H2WCp2)2]+ ( 5 ). The Dalphos complex 4 can be protonated to give the bicationic adduct 4 H, showing AuI⋅⋅⋅H+−N hydrogen bonding. The gold(III) Lewis acid [(C^N−CH)Au(C6F5)(OEt2)]+ binds Cp2WH2 to give an Au-H-W σ-complex. By contrast, the pincer species [(C^N^C)Au]+ adds Cp2WH2 by a purely dative W→Au bond, without Au⋅⋅⋅H interaction. The biphenylyl-based chelate [(C^C)Au]+ forms [(C^C)Au(μ-H)2WCp2]+, with two 2-electron-3-centre W−H⋅⋅⋅Au interactions and practically no Au−W donor acceptor contribution. In all these complexes, strong but polarized W−H bonds are maintained, without H-transfer to gold. On the other hand, the reactions of Cp2ZrH2 with gold complexes led in all cases to rapid H-transfer and formation of gold hydrides. Relativistic DFT calculations were used to rationalize the striking reactivity and bonding differences in these heterobimetallic hydride complexes along with an analysis of their characteristic NMR parameters and UV/Vis absorption properties.  相似文献   

14.
The discovery of sustainable and scalable synthetic protocols leading to gold–aryl compounds bearing N-heterocyclic carbene (NHC) ligands sparked an investigation of their reactivity and potential utility as organometallic synthons. The use of a mild base and green solvents provide access to these compounds, starting from widely available boronic acids and various [Au(NHC)Cl] complexes, with reactions taking place under air, at room temperature and leading to high yields with unprecedented ease. One compound, (N,N′-bis[2,6-(di-isopropyl)phenyl]imidazol-2-ylidene)(4-methoxyphenyl)gold, ([Au(IPr)(4-MeOC6H4)]), was synthesized on a multigram scale and used to gauge the reactivity of this class of compounds towards C−H/N−H bonds and with various acids, revealing simple pathways to gold–based species that possess attractive properties as materials, reagents and/or catalysts.  相似文献   

15.
Treatment of the (isocyanide)gold(I) species LAuCl (L=tBuNC, 2,6‐Me2C6H3NC) with 4‐mercaptobenzoic acid in the presence of NaOMe yields the complexes [Au(4‐SC6H4CO2H)L] in good yield. Reaction of LAuCl with 2‐HSQn (Qn=quinoline) and 2‐HSPy (Py=pyridine) under the same conditions provides the thiolato compounds [Au(2‐SQn)L] and [Au(2‐SPy)L], respectively. A structural investigation of the pyridylthiolato compound revealed chains of molecules with alternating medium and long Au−Au interactions. Treatment of this compound with HBF4 results in the cationic species [Au(2‐HSPy)(2,6‐Me2C6H3NC)]+ as the BF4 salt. The same product is obtained on reaction of [AuCl(2,6‐Me2C6H3NC)] with AgOTf followed by HSPy. Treatment of the gold(I) halide compounds LAuCl (L=tBuNC, 2,6‐Me2C6H3NC) with potassium 1,3,4‐thiadiazole‐2,5‐dithiolate (KSSSK) leads to the isolation of dinuclear thiolatogold complexes [(AuL)2(SSS)]. These products go on to form insoluble polymers through loss of isocyanide on standing in solution. A single crystal of [{Au(tBuNC)}2(SSS)] was obtained and the subsequent structural analysis revealed one of the most complicated networks known based solely on aurophilic interactions. A good comparison to the ‘soft' S‐donation of the thiolato ligands was provided by the synthesis of a number of nitratogold(I)complexes with the anion bound through the ‘hard' O‐donor. Reaction of iPrNC and CyNC with Au(tht)Cl provided the complexes [AuCl(iPrNC)] and [AuCl(CyNC)], respectively. These compounds were found to yield the respective nitrato species [Au(NO3)iPrNC)] and [(Au(NO3)(CyNC)] on treatment with AgNO3. The nitrato complexes yielded single crystals enabling a structural investigation to be carried out. While [Au(NO3)(CyNC)] has a more conventional structure with dimers aligned into strings with alternating short and long aurophilic bonding, [Au(NO3)(iPrNC)] has a unique structure based on strings of alternating, corner‐sharing Au6 and Au8 units with short Au−Au contacts in edge‐sharing Au3 triangles.  相似文献   

16.
The reaction of [(NHC)AuCl] complexes (NHC = N-heterocyclic carbene) with a chloride abstractor of the type AgX, where X is a non-coordinating anion, led, in the presence of a neutral coordinating solvent S, to a series of cationic gold(I) complexes of formulae [(NHC)Au(S)]X. Hence, different cationic NHC-gold(I) species bound to acetonitrile, pyridine, 2-Br-pyridine, 3-Br-pyridine, norbornadiene, and THF could be synthesized and characterized by 1H and 13C NMR spectroscopies. Among these, the results of X-ray diffraction studies for [(IPr)Au(NCMe)]SbF6, [(IAd)Au(NCMe)]PF6, [(IPr)Au(pyr)]PF6, [(IPr)Au(2-Br-pyr)]PF6, [(IPr)Au(3-Br-pyr)]PF6 are discussed. As special feature, the structure of [(IPr)Au(2-Br-pyr)]PF6 presented a secondary interaction between the gold and bromine atoms. Additionally, while attempting to obtain crystals of [(IPr)Au(nbd)]PF6, we crystallized a decomposition product featuring a very rare anion as bridging ligand with formulae [(μ-PF4)((IPr)Au)2]PF4. The observation of a possible P-F bond activation has important implications for cationic Au-based homogeneous catalysis. Finally, we compared the catalytic activities of the different cationic [(NHC)Au(S)]X complexes in the allylic acetate rearrangement reaction and notably observed the inertness of pyridine-based catalysts.  相似文献   

17.
The N‐heterocyclic carbene–phosphinidene adduct IPr?PSiMe3 is introduced as a synthon for the preparation of terminal carbene–phosphinidyne transition metal complexes of the type [(IPr?P)MLn] (MLn=(η6‐p‐cymene)RuCl) and (η5‐C5Me5)RhCl). Their spectroscopic and structural characteristics, namely low‐field 31P NMR chemical shifts and short metal–phosphorus bonds, show their similarity with arylphosphinidene complexes. The formally mononegative IPr?P ligand is also capable of bridging two or three metal atoms as demonstrated by the preparation of bi‐ and trimetallic RuAu, RhAu, Rh2, and Rh2Au complexes.  相似文献   

18.
We report a simple, highly stereoselective synthesis of (+)‐(S)‐γ‐ionone and (‐)‐(2S,6R)‐cis‐γ‐irone, two characteristic and precious odorants; the latter compound is a constituent of the essential oil obtained from iris rhizomes. Of general interest in this approach are the photoisomerization of an endo trisubstituted cyclohexene double bond to an exo vinyl group and the installation of the enone side chain through a [(NHC)AuI]‐catalyzed Meyer–Schuster‐like rearrangement. This required a careful investigation of the mechanism of the gold‐catalyzed reaction and a judicious selection of reaction conditions. In fact, it was found that the Meyer–Schuster reaction may compete with the oxy‐Cope rearrangement. Gold‐based catalytic systems can promote either reaction selectively. In the present system, the mononuclear gold complex [Au(IPr)Cl], in combination with the silver salt AgSbF6 in 100:1 butan‐2‐one/H2O, proved to efficiently promote the Meyer–Schuster rearrangement of propargylic benzoates, whereas the digold catalyst [{Au(IPr)}2(μ‐OH)][BF4] in anhydrous dichloromethane selectively promoted the oxy‐Cope rearrangement of propargylic alcohols.  相似文献   

19.
The mechanism of the intermolecular hydroamination of 3-methylbuta-1,2-diene ( 1 ) with N-methylaniline ( 2 ) catalyzed by (IPr)AuOTf has been studied by employing a combination of kinetic analysis, deuterium labelling studies, and in situ spectral analysis of catalytically active mixtures. The results of these and additional experiments are consistent with a mechanism for hydroamination involving reversible, endergonic displacement of N-methylaniline from [(IPr)Au(NHMePh)]+ ( 4 ) by allene to form the cationic gold π-C1,C2-allene complex [(IPr)Au(η2-H2C=C=CMe2)]+ ( I ), which is in rapid, endergonic equilibrium with the regioisomeric π-C2,C3-allene complex [(IPr)Au(η2-Me2C=C=CH2)]+ ( I′ ). Rapid and reversible outer-sphere addition of 2 to the terminal allene carbon atom of I′ to form gold vinyl complex (IPr)Au[C(=CH2)CMe2NMePh] ( II ) is superimposed on the slower addition of 2 to the terminal allene carbon atom of I to form gold vinyl complex (IPr)Au[C(=CMe2)CH2NMePh] ( III ). Selective protodeauration of III releases N-methyl-N-(3-methylbut-2-en-1-yl)aniline ( 3 a ) with regeneration of 4 . At high conversion, gold vinyl complex II is competitively trapped by an (IPr)Au+ fragment to form the cationic bis(gold) vinyl complex {[(IPr)Au]2[C(=CH2)CMe2NMePh]}+ ( 6 ).  相似文献   

20.
Dimethyl 5‐aminoisophthalate, which is a building block of amino‐substituted tetralactam macrocycles, was used as ligand in gold(I) chemistry to form model complexes for macrocyclic gold compounds. Reaction of dimethyl 5‐aminoisophthalate with chlorodiphenylphosphine gave the diphosphine compound dimethyl 5‐[N,N‐bis(diphenylphosphanyl)amino]isophthalate (dmbpaip). This compound can further be reacted with [AuCl(tht)] (tht = tetrahydrothiophene) to give the dinuclear complex [Au2Cl2(dmbpaip)]. In contrast, treatment of dmbpaip with [Au(tht)2]ClO4 resulted in the ionic compound [Au2(dmbpaip)2](ClO4)2 in which the cation forms an eight‐membered Au2P4N2 heterocycle. In both gold(I) compounds Au···Au interactions are observed. All new compounds were characterized by single‐crystal X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号