首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramics with formula (1 − x)Pb(Zr0.52Ti0.48)O3x(Bi3.25La0.75)Ti3O12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit.  相似文献   

2.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application.  相似文献   

3.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

4.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

5.
We have investigated the relation among ρT characteristics, superconductivity, annealing conditions and the crystallinity of polycrystalline (In2O3)1−x–(ZnO)x films. We annealed as-grown amorphous films in air by changing annealing temperature and time. It is found that the films annealed at 200 °C or 300 °C for a time over 0.5 h shows the superconductivity. Transition temperature Tc and the carrier density n are Tc < 3.3 K and n ≈ 1025–1026 m−3, respectively. Investigations for films with x = 0.01 annealed at 200 °C have revealed that the Tc, n and crystallinity depend systematically on annealing time. Further, we consider that there is a suitable annealing time for sharp resistive transition because the transition width becomes wider with longer annealing times. We studied the upper critical magnetic field Hc2(T) for the film with different annealing time. From the slope of dHc2/dT for all films, we have obtained the resistivity ρ dependence of the coherence length ξ(0) at T = 0 K.  相似文献   

6.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

7.
ZnO–As2O3–Sb2O3 glasses of varying concentrations of Sb2O3 with ZnO (ranging from 5 to 45 mol%) are prepared. A number of studies, including differential thermal analysis, and study of spectroscopic properties (viz., optical absorption and IR spectra) and dielectric properties (constant ε′, loss tan δ and ac conductivity σac) over a wide range of frequency and temperature of these glasses are carried out. Analyses of the results of these investigations have indicated that the glasses containing higher concentrations of Sb2O3 are more suitable for non-linear optical (NLO) applications.  相似文献   

8.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

9.
We investigated the optical properties and electrical properties of N-doped ZnO layers grown on (0 0 0 1) GaN/Al2O3 substrates by molecular beam epitaxy, employing 10 K photoluminescence (PL) measurements, current–voltage (IV) measurements, capacitance–voltage (CV) measurements, and 100 K photocapacitance (PHCAP) measurements. 10 K PL spectra showed that excitonic emission is dominant in N-doped ZnO layers grown after O-plasma exposure, while overall PL emission intensity is significantly reduced and deep level emission at around 2.0 2.2 eV is dominant in N-doped ZnO layers grown after Zn exposure. IV and CV measurements showed that N-doped ZnO layers grown after Zn exposure have better Schottky diode characteristics than O-plasma exposed samples, and an N-doped ZnO layer grown at 300 °C after Zn exposure has best Schottky diode characteristics. This phenomenon is presumably due to lowered background electron concentration induced by the incorporation of N. PHCAP measurements for the N-doped ZnO layer revealed several midgap trap centers at 1.2 1.8 eV below conduction band minimum.  相似文献   

10.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

11.
We present a theoretical study of the collisions of atomic oxygen with O-precovered β-cristobalite (1 0 0) surface. We have constructed a multidimensional potential energy surface for the O2/β-cristobalite (1 0 0) system based mainly on a dense grid of density functional theory points by using the interpolation corrugation-reducing procedure. Classical trajectories have been computed for quasithermal (100–1500 K) and state-specific (e.g., collision energies between 0.01 and 4 eV) conditions of reactants for different O incident angles (θv). Atomic sticking and O2(adsorbed) formation are the main processes, although atomic reflection and Eley–Rideal (ER) reaction (i.e., O2 gas) are also significant, depending their reaction probabilities on the O incident angle. ER reaction is enhanced by temperature increase, with an activation energy derived from the atomic recombination coefficient (γO(θv = 0°, T)) equal to 0.24 ± 0.02 eV within the 500–1500 K range, in close agreement with experimental data. Calculated γO(θv = 0°, T) values compare quite well with available experimental γO(T) although a more accurate calculation is proposed. Chemical energy accommodation coefficient βO(T) is also discussed as a function of ER and other competitive contributions.  相似文献   

12.
The bioactive glass-ceramics in the CaO–P2O5–Na2O–SrO–ZnO system were synthesized by the sol–gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase β-Ca2P2O7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP2O6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca4P6O19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.  相似文献   

13.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

14.
Rod-like and platelet-like nanoparticles of simple-crystalline barium hexaferrite (BaFe12O19) have been synthesized by the molten salt method. Both particle size and morphology change with the reaction temperature and time. The easy magnetization direction (0 0 l) of the BaFe12O19 nanoparticles has been observed directly by performing X-ray diffraction on powders aligned at 0.5 T magnetic field. The magnetic properties of the BaFe12O19 magnet were investigated with various sintering temperatures. The maximum values of saturation magnetization (σs=65.8 emu/g), remanent magnetization (σr=56 emu/g) and coercivity field (Hic=5251 Oe) of the aligned samples occurred at the sintering temperatures of 1100 °C. These results indicate that BaFe12O19 nanoparticles synthesized by the molten salt method should enable detailed investigation of the size-dependent evolution of magnetism, microwave absorption, and realization of a nanodevice of magnetic media.  相似文献   

15.
Ba2(In1 − xMx)2O5 − y / 2(OH)y‪□1 − y / 2 (y ≤ 2; M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) compounds were prepared by reacting Ba2(In1 − xMx)2O5‪ phases with water vapor. This reaction is reversible. Analyses of the hydration process by TG and XRD studies show that the thermal stability of hydrated phases increases when x increases and that the incorporation of water is not a single-phase reaction inducing either a crystal system or space group modification. Fully hydrated (y = 2) and dehydrated (y = 0) samples have been stabilized at room temperature and characterized for all compositions. In wet air, all phases show a proton contribution to the total conductivity at temperatures between 350 and 600 °C. At a given temperature, proton conductivity increases with the substitution ratio and reaches at 350 °C, 5.4 10− 3 S cm− 1 for Ba2(In0.65Sc0.35)2O4.20.2(OH)1.6.  相似文献   

16.
Zhuo Li  Huiqing Fan   《Solid State Ionics》2009,180(20-22):1139-1142
The aging properties of 0.01 mol% Mn-doped Ba0.8Sr0.2TiO3 ceramics have been investigated from 30 °C to 400 °C at various frequencies. Decreases in ε′(T) of the aged sample compared to the fresh one around the tetragonal–cubic transition and in the regime of diffusion have been observed. The activation energy Ea = 1.25 eV obtained from the J–T loop at zero electric field indicates that oxygen vacancies dominate in the aging. The symmetry-conforming principle of point defects was employed to explain the time and temperature dependence of aging in the dielectric constant and double/constricted PE loops of the samples aged in the paraelectric and ferroelectric state.  相似文献   

17.
The polycrystalline samples of Pb(Zr0.65−xMnxTi0.35)O3 (PZMT) (x=0, 0.05, 0.10, 0.15) were prepared by a high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of manganese (Mn) on the electrical behavior (complex impedance Z*, complex modulus M*, electrical conductivity and relaxation mechanisms) of the PZMT systems have been carried out by a nondestructive complex impedance spectroscopy (CIS) technique at 400 °C. The Nyquist plots suggest that the grains only are responsible in the conduction mechanism of the materials. The occurrence of single arc in the complex modulus spectrum of all the compositions of Mn confirms the single-phase characteristics of the PZMT compounds, and also confirms the presence of non-Debye type of multiple relaxation in the material.  相似文献   

18.
The hydrated oxygen deficient complex perovskite-related materials Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O were studied at high water vapour pressures over a large temperature range by electrical conductivity measurements, thermogravimetry (TG), and X-ray powder diffraction (XRPD). In humid atmospheres both materials are known to exhibit protonic conductivity below dehydration temperatures, with peak-shaped maxima at about 500 °C. In this work we show that the peaks expand to plateaus of high conductivity from 500 to 700 °C at a water vapour pressure of 1 atm. However, in situ synchrotron XRPD of Sr4(Sr2Nb2)O11·nH2O as a function of temperature shows that these observations are in fact coincident with melting and dehydration of a secondary phase Sr(OH)2. The stability of Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O in humid atmospheres is thus insufficient, causing decomposition into perovskites with lower Sr content and SrO/Sr(OH)2 secondary phases. This, in turn, rationalizes the observation of peaks and plateaus in the conductivity of these materials.  相似文献   

19.
m-plane ZnO film was epitaxially deposited on (1 0 0) γ-LiAlO2 by metal-organic chemical vapor deposition at 600 °C with a GaN buffer layer. The epitaxial relationships between ZnO and GaN, GaN and (1 0 0) γ-LiAlO2 were determined by X-ray diffraction Φ-scans. There exhibits very small decrease for the E2 mode shift (0.3 cm−1) of ZnO in the Raman spectrum, which indicates the epitaxial ZnO film was under a slight tensile stress (5.77 × 107 Pa). Unlike the highly strained a-plane ZnO, temperature dependent photoluminescence spectra show that the free A exiton emission was observed with the temperature ≤138 K.  相似文献   

20.
Y3−xMg2AlSi2O12:Cex3+ (x=0.015, 0.03 and 0.06) phosphors possessing garnet crystal structure were synthesized by the sol–gel combustion technique. The samples were characterized by application of powder X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, thermal quenching (TQ) and scanning electron microscopy (SEM). Moreover, luminous efficacies (LE), color points and quantum efficiencies (QE) were calculated. Optical properties were studied as a function of Ce3+ concentration and annealing temperature. XRD analysis revealed that sintering of polycrystalline Y3Mg2AlSi2O12:Ce3+ powders at 1550 °C results in nearly single-phase garnet materials. Phosphors showed broad emission band in the range of 500–750 nm and had the maximum intensity at 600 nm, which results in strongly red-shifted phosphors compared with conventional YAG:Ce phosphors emitting at 560 nm. However, strong concentration quenching has also been observed, probably due to increased Stokes shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号