首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Syngeneic mice bearing a colorectal carcinoma (Colo 26) growing subcutaneously in the flank region received photodynamic therapy (PDT) when the tumor was 7-12 mm diameter. Light (emission at 675 nm from an argon ion pumped dye laser, laser energy 100 J, power 50 mW) was delivered to the tumor 24-28 h after the i.v. injection of a single dose of chloro aluminum sulfonated phthalocyanine (ClAlSPc) at 5 mg kg1 body weight. Control tumor-bearing animals received (1) phosphate buffered saline (PBS) but not PDT, (2) ClAlSPc but not PDT, or (3) PBS injection plus PDT. Five days later PDT tumors of the ClAlSPc + PDT group were markedly reduced in size (mean weight 0.075 ± 0.027 g) as compared with those from control groups 1 (0.408 ± 0.167 g), 2 (0.475 ± 0.143 g) or 3 (0.376 ± 0.153 g). Histological examination revealed that ClAlSPc + PDT induced severe necrosis and cytotoxicity of neoplastic cells with viable tumor limited to a small peripheral margin. Animals in the ClAlSPc + PDT group in a repeat experiment survived significantly longer than animals in the three control groups suggesting that ClAlSPc may be a useful photosensitiser for PDT of cancer.  相似文献   

2.
A system for time-gated fluorescence imaging was used to perform measurements on tumor-bearing mice treated with hematoporphyrin derivative (HpD). The aim of the study was to define the potential of this technique in the diagnosis of tumors by taking advantage of the long fluorescence lifetime of the exogenous dye with respect to the decay times of the natural fluorescence. After the administration of three different drug doses (5, 10 and 25 mg/kg body weight), fluorescence images were acquired at various uptake times (from 2 h to 10 d), to determine the best instrumental conditions and experimental procedure for the detection of tumors in the murine model considered. The optimal fluorescence contrast between the tumor area and the surrounding healthy tissue was found at 12 h after the administration of either 5 or 10 mg/kg HpD and was anticipated at 8 h for the highest drug dose. In this optimum condition, the tumor region could be identified even after the injection of 5 mg/kg HpD. A better fluorescence contrast was always obtained in 15 ns-delayed images with respect to synchronous ones.  相似文献   

3.
A highly sensitive charge-coupled device (CCD) camera, linked to a computerized image processor, has been used to obtain fluorescence images of chloro-aluminum sulfonated phthalocyanine (ClAlSPc), and its mono- to tetra-sulfonated constituents, in cells recovered from the peritoneal cavity of dye-treated mice. Immunofluorescence and cytochemistry showed that cells which preferentially took up ClAlSPc and its sulfonated species were predominantly of the monocyte-macrophage series. While this technique may be of use in determining the nature of those cells capable of taking up light sensitive dyes and, perhaps, the intracellular location of such agents, the possibility that photoinactivation by dye aggregation could reduce the sensitivity of this procedure is discussed.  相似文献   

4.
The effect of systemic administration on drug uptake at cellular level was evaluated using time-gated fluorescence spectroscopy performed on a murine ascitic tumour model. Mice bearing L1210 leukaemia were injected intraperitoneally or intravenously with 25 mg per kg body weight hematoporphyrin derivative (HpD), 12.5 mg per kg body weight photofrin II (PII), 25 or 5 mg per kg body weight disulphonated aluminium phthalocyanine (AlS2Pc). Every 2 h and for up to 22 or 30 h, mice were sacrificed, leukaemic cells extracted from the peritoneum, washed, and resuspended in buffer for fluorescence measurements. HpD and PII emission spectra were almost identical 12 h after intraperitoneal injection with main peaks at 630 nm and no appreciable changes afterwards. In the first 12 h, the PII fluorescence spectrum was constant, while in the case of HpD a shoulder at 615 nm was detectable. Similar fluorescence behaviour was observed after intravenous administration of porphyrin derivatives. These results seem to confirm that the tumour localizing fraction is the part actually retained by the cells. The AlS2Pc spectrum peaked at 685 nm and did not change in any of our experiments. AlS2Pc is incorporated more rapidly with respect to porphyrins, as was clearly observed in the case of intravenous administration, where the AlS2Pc fluorescence was readily detectable after 2 h, whereas the PII emission became apparent only after 4-6 h.  相似文献   

5.
Abstract The most widely used agents for photodynamic therapy are the porphyrin photosensitizers. It has been shown that hematoporphyrin derivative (HpD) can cause murine marrow hypercellularity and splenic hypertrophy. We have examined the effect on survival and marrow cellularity of high dose l,3-bis(2-chloroethyl)-l-nitrosourea (BCNU) after HpD or dihematoporphyrin ether (DHE) pretreatment in C57BL/6J mice.
The lethal toxicity of the LDS0+ 10% dose of BCNU (60 mg kg−1) was significantly reduced by pretreatment with HpD when the HpD was administered at least 3 days prior to the BCNU. HpD administered 1 or 2 days prior to BCNU or after BCNU had no effect. The percent death rate was reduced from 80 to 0% when HpD was administered 7 and 5 days prior to BCNU.
No alteration of the lethal toxicity rate of BCNU at doses of 80 mg kg−1 were identified with DHE pretreatment although some increase in median survival was noted in two groups. Some reduction in lethal toxicity was noted when 60 mg kg−1 BCNU was used and the pretreatment dose of DHE was 10 or 25 mg kg−1 given twice 3 days apart. Furthermore, a significant reduction of BCNU induced marrow cell depletion was found when low doses of DHE were used as pretreatment. High doses of DHE resulted in marrow depletion. Both HpD and DHE altered the toxicity of BCNU.
Should porphyrin photosensitizers, which alone have little toxicity, prove to protect against nitrosourea toxicity then an important dose limiting factor (myelotoxicity) could be altered if not reduction in the tumouricidal activity occurs.  相似文献   

6.
Abstract— The use of hematoporphyrin derivative (HpD) has previously been demonstrated to be beneficial in clinical cancer therapy. This paper describes cell culture studies used to examine HpD phototherapy in Chinese hamster ovary cells (line CHO). Survival curves have been obtained for both direct HpD toxicity and HpD induced photoinactivation. Examination of HpD induced photoinactivation as a function of stage in the cell growth cycle has also been performed, as has the quantitative measurement of HpD uptake in cells (using 3H-HpD) as a function of cellular incubation time, serum concentration in the incubation medium, and cell cycle position. In the absence of light, no toxicity was observed for HpD incubation levels of up to 400 μg/m/ when incubations times were 3 h or less. Exposure of cells to light alone (> 590 nm, 4.0 mW/cm2) for 9 min was also found to be completely nontoxic. Survival curves obtained for exponentially growing cells labeled with various concentrations of HpD and subsequently illuminated with red light exhibited a threshold or shoulder region at short exposure times followed by exponential killing at longer exposure times. The cell cycle response curves for HpD induced photoinactivation of synchronized CHO cells was nearly flat, indicating no variation in sensitivity for cells treated at time periods from 6 to 15 h after mitosis. Additon of serum to the incubation medium resulted in improved plating efficiency and reproducible survival curves but decreased cellular uptake of HpD.  相似文献   

7.
Abstract-Time-resolved reflectance was used to measure the absorption spectrum of hematoporphyrin derivative (HpD) in vivo in a murine tumor model. Reflectance measurements were performed in the 600–640 nm range on mice bearing the L1210 leukemia. Then the animals were administered 25 mg/kg body weight of HpD intraperito-neally. One hour later the reflectance measurements were repeated. Fitting of the data using the diffusion theory allowed assessment of the absorption coefficient before and after the administration. As a difference between the latter and the former data, the in vivo absorption spectrum of HpD was evaluated. Maximum absorption was measured at 620–625 nm. Similar spectral behavior was obtained for HpD in solution in the presence of low-density lipoproteins.  相似文献   

8.
In this study, a novel low molecular weight of acetylaminoglucan (AGA) was obtained and its antitumor activity on H22 tumor-bearing mice was investigated. The results of UV, HPLC and FT-IR showed that AGA present high purity with low molecular weight of 2.76 × 103 Da. Animal experiments showed that AGA could inhibit the proliferation of tumor cells in H22 tumor-bearing mice by protecting the immune organs, enhancing the phagocytosis ability of macrophages, killing activity of NK cells and proliferation capacity of lymphocytes, improving the levels of cytokines in vivo and regulating the distribution of lymphocyte subsets, and the tumor inhibition rate reached to 52.74% (50 mg/kg). Cell cycle determination further indicated that AGA could induce apoptosis of tumor cells and arrests it in S phase. These results will provide a data basis for the potential application of AGA in pharmaceutical industry.  相似文献   

9.
Abstract Administration of a small dose (300 ng/mouse) of photofrin II (PII) to mice, followed by 4 days of exposure to only ambient fluorescent light in animal quarters, induced Fc-receptor-mediated phagocytic and superoxide-generating capacities of peritoneal macrophages by five- and seven-fold, respectively. When these mice were kept in the dark for 4 days, no activation of macrophages was observed. These results suggest that macrophage activation is a consequence of photodynamic activation. Much higher doses (> 3000 ng/mouse) suppressed macrophage activity. However, 2 months after administration of 3000 ng PII/mouse, greatly enhanced phagocytic and superoxide-generating capacities of peritoneal macrophages were observed.
In vitro photodynamic activation of macrophages was analyzed after white or red fluorescent light exposure of mouse peritoneal cells (mixture of macrophages and B and T lymphocytes) in media containing PII. A short (10 s) white fluorescent light treatment of peritoneal cells in a medium containing 0.03 ng PII/mL produced the maximal level of phagocytic activity of macrophages. Illumination with the same total fluence of red fluorescent light requires a threefold higher concentration of PII to achieve the same extent of enhanced phagocytic activity of macrophages. Thus, photodynamic activation of macrophages with PII by white fluorescent light was more efficient than by red fluorescent light. Similarly, photodynamic killing of retinoblastoma cells was more efficient with white than red fluorescent light. The concentration of hematoporphyrin (HP) or PII required for direct photodynamic killing of retinoblastoma cells was roughly four orders of magnitude greater than that required for activation of macrophages. These results suggest that effective photodynamic therapy may be achieved with milder treatments that stimulate macrophage activity, an important component of immunopotentiation.  相似文献   

10.
Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, nontumor-bearing CD4 knockout (CD4-/-) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg kg(-1) Pc4, 110 J cm(-2) light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4-/- mice compared with WT mice. We next examined the role of CD8+ T cells in Pc4-PDT-induced immunosuppression using CD8-/- mice following the same treatment regimen used for CD4-/- mice. Similar to CD4-/- mice, CD8-/- mice exhibited less immunosuppression than WT mice. Pc4-PDT-induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (P < 0.05) and was mediated primarily by T cells, although macrophages were also found to play a role. Procedures that limit PDT-induced immunosuppression but do not affect PDT-induced regression of tumors may prove superior to PDT alone in promoting long-term antitumor responses.  相似文献   

11.
Abstract The efficiency of different sensitizers for photodynamic therapy (PDT) was tested using a model system with a C3H mammary carcinoma growing subcutaneously on the dorsal side of mouse feet. Growth curves were constructed from which growth delay and doubling time in the regrowth phase were calculated. As PDT induced oedema in the mouse foot, this model system also allowed assessment of normal tissue response.
The following sensitizers were tested: hematoporphyrin derivative (HpD), Photofrin II (PII), tetraphenylporphinetetrasulfonate (TPPS4), acridine orange (AO), phthalocyanine tetrasulfonate (PCTS), Al- and Zn-phthalocyanine tetrasulfonate (A1PCTS and ZnPCTS). For tumor control, the following sensitizer efficiencies were found: PII > HpD > AIPCTS > TPPS4 >>> ZnPCTS, PCTS, AO. With regard to sensitizing normal-tissue damage: PII > AIPCTS, TPPS4 > HpD, ZnPCTS, PCTS. The results suggest that AIPCTS should be further evaluated for use in PDT.  相似文献   

12.
Cyclosporine A (CsA) is a fungus-derived molecule with potent immunosuppressive activity that has been largely used to downregulate cell-mediated immune responses during transplantation. However, previous data have indicated that CsA shows immunomodulatory activity that relays on the antigen concentration and the dose of CsA used. To test the hypothesis that minimal doses of CsA may show different outcomes on grafts, we used an experimental model for skin transplants in mice. ICR outbred mice received skin allografts and were either treated daily with different doses of CsA or left untreated. Untreated mice showed allograft rejection within 14 days, with graft necrosis, infiltration of neutrophils and macrophages and displayed high percentages of CD8+ T cells in the spleens, which were associated with high serum levels of IL-12, IFN-g and TNF-α. As expected, mice treated with therapeutic doses of CsA (15 mg/kg) did not show allograft rejection within the follow-up period of 30 days and displayed the lowest levels of IL-12, IFN-g and TNF-α as well as a reduction in CD8+ lymphocytes. In contrast, mice treated with consecutive minimal doses of CsA (5×10(-55) mg/kg) displayed an acute graft rejection as early as one to five days after skin allograft; they also displayed necrosis and strong inflammatory infiltration that was associated with high levels of IL-12, IFN-g and TNF-α. Moreover, the CD4+ CD25hiFoxP3+ subpopulation of cells in the spleens of these mice was significantly inhibited compared with animals that received the therapeutic treatment of CsA and those treated with placebo. Our data suggest that consecutive, minimal doses of CsA may affect Treg cells and may stimulate innate immunity.  相似文献   

13.
The immunomodulatory function of longan pulp polysaccharide-protein complex (LP3) was investigated in immunosuppressed mice models. Compared with the model control, peroral administration of 100 mgkg?1d?1 LP3 could significantly increase/enhance antibody production against chicken red blood cell (CRBC), concanavalin A (ConA)-induced splenocyte proliferation, macrophage phagocytosis, NK cell cytotoxicity against YAC-1 lymphoma cell, and interferon-gamma (INF-γ) and interleukin-2 (IL-2) secretion in serum (P < 0.05). The immunomodulatory effects, except for those on splenocytes and macrophages (P > 0.05), were also observed in mice administered with 50 or 200 mgkg?1d?1 LP3 (P < 0.05). The beneficial effects of 50-200 mgkg?1d?1 LP3 were comparable to those of 50 mgkg?1d?1 ganoderan. The strong immunomodulatory activity of LP3 confirmed its good potential as an immunotherapeutic adjuvant.  相似文献   

14.
Tumor detection has been carried out in mice sensitized with hematoporphyrin derivative (HpD) by measuring the spatial distribution of the fluorescence lifetime of the exogenous compound. This result has been achieved using a time-gated video camera and a suitable mathematical processing that led to the so-called “lifetime images.” Extensive experimental tests have been performed on mice bearing the MS-2 fibrosarcoma or the L1210 leukemia. Lifetime images of mice show that the fluorescence decay of HpD is appreciably slower in the tumor than in healthy tissues nearby, allowing a reliable detection of the neoplasia. The lengthening of the lifetime in tumors depends little on the drug dose, which in our experiments could be lowered down to 0.1 mg/kg body weight, still allowing a definite tumor detection. In order to ascertain the results achieved with the imaging apparatus, high-resolution spectroscopy, based on a time-correlated single photon counting system, has also been performed to measure the fluorescence lifetime of the drug inside the tumor and outside. The outcomes obtained with two techniques are in good agreement.  相似文献   

15.
Abstract— Monochromatic red light generated by a tunable dye laser is currently being utilized for the treatment of solid tumors with hematoporphyrin derivative (HpD) photoradiation therapy (PRT). Experiments were performed using mammalian cells to determine the most efficient wavelength of red light (620 to 640 nm range) for HpD induced cellular photoinactivation. Decrease in the clonogenic potential of Chinese hamster ovary (CHO) cells was examined following both short (I h) and extended (12 h) HpD incubation times. Maximal photosensitization was observed with wavelengths ranging from 630 to 632.5 nm and the action spectra for cell killing matched the absorption spectra for HpD bound to cells. Similar observations were obtained following both short and extended HpD-cell incubation times. The potential relevance of these results as they relate to clinical HpD PRT are discussed.  相似文献   

16.
The binding of hematoporphyrin derivative (HpD) to brain tumor cells and their photosensitivity was studied as a function of HpD concentration, time of incubation and growth phase of cells. Upon binding to cells, HpD showed three fluorescence bands at 616, 636 and 678 nm. In plateau phase cells a fluorescence band at 636 nm was predominant, which was further enhanced by increasing HpD concentration and/or increasing incubation time. In exponential phase cells the maximum fluorescence was exhibited at 616 nm. After 1 h incubation of exponential phase cells with increasing HpD concentration an overall intensity enhancement occurred with no change in the distribution of bands, whereas longer incubation time caused an increase in relative intensity of the 636 nm band similar to that observed in plateau phase cells. After 1 h incubation with HpD plateau phase cells were more photosensitive than exponential phase cells, although cell bound HpD was much less in the former case. Incubation of cells for 24 h drastically enhanced the photosensitivity irrespective of the growth phase. Our results suggest a relationship between the fluorescence emission band of HpD at 636 nm and photosensitivity of cells.  相似文献   

17.
The present study reports on toxicity of hematoporphyrin derivative (HpD) for normal brain tissue in vivo without the addition of light. Hematoporphyrin derivative was injected by slow infusion in rat brains. Histological examination was carried out for intervals after HpD administration, ranging from 0 h to 15 days. Ultrastructural changes were examinated with transmission electron microscopy. The extent of the necrosis was determined for different HpD concentrations and compared with control animals infused with 0.9% saline. Leukocytic infiltration was observed at day 5. Transmission electron microscopy showed that nuclei of neurons were completely disintegrated 4 h after HpD administration. Furthermore disruption of myelin sheaths was observed. The extent of the necrosis decreased with lower HpD doses. Injection of 2 μg HpD in a volume of 4 μL (0.5 mg/mL) resulted in a virtually equal extension of the tissue damage, as compared to the mechanical damage in the control animals caused by the infusion procedure.  相似文献   

18.
Mitochondria have been implicated as a primary subcellular site of porphyrin localization and photodestruction. However, other organelles including the cell membrane, lysosomes and nucleus have been shown to be damaged by hematoporphyrin derivative (HpD) photosensitized destruction as well. In this study we attempted to follow the translocation of the fluorescent components of HpD in human bladder tumor cells (MGH-U1) in culture to determine whether specific subcellular localization occurs over time. Following a 30 min exposure to HpD the cellular fluorescence was examined immediately and 1, 2, 4, and 24 h after HpD removal using fluorescence microscopy and an interactive laser cytometer. The in vitro translocation of dye appeared to be fairly rapid with fluorescence present at the cell membrane and later (1-2 h) within a perinuclear area of the cytoplasm. To determine whether HpD had become concentrated into a specific subcellular organelle, these fluorescence distribution patterns were compared with fluorescent marker dyes specific for mitochondria, endoplasmic reticulum and other membranous organelles. The HpD fluorescence did not appear to be as discrete as the dyes specific for mitochondria or endoplasmic reticulum but appeared similar to the diffuse cytomembrane stain. Finally, the interaction between the fluorescent components of HpD and the cellular constituents was evaluated using a "fluorescence redistribution after photobleaching" technique. The results indicated that the mean lateral diffusion for HpD in MGH-U1 cells was 1.05 x 10(-8) cm2/s, a rate closer to that of lipid diffusion (10(-8)) than that of protein diffusion (10(-10)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In order to apply photodynamic therapy (PDT) to pigmented melanoma, the efficacy of PDT mediated by pheophorbide alpha from silkworm excreta (SPbalpha) and commercial Photofrin against B16F10 melanoma was comparatively studied from the in vivo assay using C57BL/6J mice. From in vitro PDT assay, the proliferation of B16F10 cells treated with SPbalpha (more than 0.5 microg/ml) and light illumination (1.2 J/cm2) were significantly inhibited with the necrotic response. This indicated that the photocytotoxicity of SPbalpha (665 nm) was not influenced by melanin from melanoma. From the assessment of the in vivo photosensitizing activity, the tumor growth was further delayed in groups treated with SPbalpha/PDT compared to that treated with Photofrin /PDT. The survival rate of tumor bearing mice treated with SPbalpha/PDT was closely associated with its photosensitizing effect. In addition, the photosensitizing effect of SPbalpha/PDT showed a dose dependent tendency in light illumination. These results demonstrated that B16F10 melanoma cells were significantly photosensitized by SPbalpha/PDT, regardless of the influence of melanin from melanoma, and SPbalpha/PDT at very low drug dose (1 mg/kg) and light dose (1.2 J/cm2) showed the photosensitizing efficacy surpassing Photofrin against B16F10 melanoma in mice system.  相似文献   

20.
Photodynamic therapy (PDT) of cancer combines irradiation of tumors with visible light following selective uptake of the photosensitizer by the tumor cells. PhotofrinR-II (Pf-II) is the only photosensitizer which is in clinical use in PDT, whereas chloroaluminum phthalocyanine tetrasulfonate (AlPcTS) has also shown promise in preclinical studies. In most such studies, the effectiveness of the photosensitizers has been assessed in implanted tumor model systems rather than in model systems where tumors are allowed to grow in their own connective tissue matrix. In this study the pharmacokinetics, tumor ablation capability and cutaneous photosensitization response of AlPcTS have been assessed in mice bearing chemically- and ultraviolet B radiation (UVB)-induced benign skin papillomas. When tumor-bearing animals were injected intraperitoneally with AlPcTS (5 mg/kg body wt), maximum tumor:normal skin ratio of 2.4 was observed at 48 h, at which time the mice were irradiated within the absorption spectrum of the photosensitizer. In tumor ablation studies with SENCAR mice bearing chemically-induced skin tumors, AlPcTS resulted in greater than 80% ablation in tumor volume at 20 days post-irradiation. In cutaneous photosensitization response, AlPcTS produced only transient effects (no effect after 24 h) in SENCAR mice. Pharmacokinetics data, tumor ablation effects and cutaneous photosensitization response of AlPcTS were comparable in SKH-1 hairless mice bearing UVB-induced skin tumors. Our data indicate that AlPcTS produces significant photodynamic effects towards the ablation of murine skin tumors, and that it does not produce prolonged cutaneous photosensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号