首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photopolymerization of MMA in visible light was studied at 40°C using acridone as the photoinitiator. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between monomer and acridone. Kinetic data indicated a lower order dependence of Rp on the initiator concentration (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.0 to 1.5, depending on the nature of the solvent used. The nonidealities in this case were also analyzed.  相似文献   

2.
Benzil (BZL)-dimethylaniline (DMA) exciplex interaction has been utilized to initiate the photopolymerization of methyl methacrylate at 40°C in bulk and in solution. Depending on the nature of the solvent used, the monomer exponent values varied between 0.47 to 2.76. Initiator exponent values were found to be 0.29 and 0.15 with respect to [BZL] and [DMA], respectively. A low value of kp 2/kt and the high initiator transfer constant values indicated significant initiator-dependent termination. The semipinacol radical formed during irradiation is thought to be mainly responsible for primary radical termination while the generated ion radicals are presumed to participate in degradative initiator transfer.  相似文献   

3.
The photopolymerization of MMA in visible light was studied at 45°C using IC13 as the photoinitiator. The initiator exponent was found to be 0.16 and the monomer exponent varied between 1.0 to 1.50, depending on the nature of the solvent. Analysis of the data revealed that the polymerization was induced by a free radical mechanism. Nonideality of the kinetics was explained on the basis of 1) Monomer-dependent chain initiation and 2) Initiator-dependent chain termination via degradative initiator transfer.  相似文献   

4.
The photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using the acridone-bromine (acridone-Br2) combination as the photoinitiator. The polymerization was found to proceed via a free radical mechanism, and the radical generation process was considered to follow an initial complexation reaction between monomer and each initiator component (acridone and Br2), followed by further interaction between these two initiator-monomer complexes. Kinetic data indicated a lower-order dependence of R on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was signifi-cant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.00 to 2.00, depending on the nature of solvents used. The nonidealities in this system were also analyzed.  相似文献   

5.
Isatoic anhydride (IA) alone did not initiate photopolymerization of methyl metacrylate (MMA) at 40°C when exposed to visible light for about 180 min. But IA, when used in combination with bromine (Br2) as the initiator, initiated the photopolymerization of MMA readily under the same conditions. This behavior was explained by the formation of a donor-acceptor type of complex between IA and Br2 in the presence of MMA. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between the initiator components and monomer. The complex initiator showed nonideal kinetics for the present system (initiator exponent < 0.5) and was analyzed. The monomer exponents varied from 0.83 to 1.15 normally depending on the nature of solvent used. Initiator-dependent chain termination was significant as well as the bimolecular mode of chain termination. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Vinyl acetate was polymerized in bulk and in benzene at 50°C using a wide range of concentrations of azobisisobutyronitrile. Values of fk (the efficiency of initiator) and kprt/kikp (the characteristic constant of primary radical termination) were found to be 0.53 and 2.00 × 104 respectively from data for bulk polymerization. In solution polymerization, the initiator exponent is a function of initiator concentration ranging from 0.35 at high concentration to- about 0.65 at low concentration. This result has been explained on the basis of degradative chain transfer to solvent and primary radical termination. The results have been treated according to mathematical formulations already developed; the characteristic constant of degradative chain transfer and the transfer constant of the solvent have been determined. The results have been compared with literature values and discrepancies explained.  相似文献   

7.
Photopolymerization of MMA was carried out at 40°C in diluted systems by use of quinolinebromine (Q–Br2) charge-transfer complex as the initiator and chloroform, carbon tetrachloride, chlorobenzene, dioxane, THF, acetone, benzene, toluene, quinoline, and pyridine as solvents. The results showed variable monomer exponents ranging from 1 to 3. For chloroform, carbon tetrachloride, and chlorobenzene, the monomer exponent observed was unity; for other solvents used, the value of the same exponent was much higher (between 2 and 3). Initiation of polymerization is considered to take place through radicals generated in the polymerization systems by the photodecomposition of (Q–Br2)–monomer complex (C) formed instantaneously in situ on addition of the Q–Br2 complex in monomer. The kinetic feature of high monomer exponent is considered to be due to higher order of stabilization of the initiating complex (C) in presence of the respective solvents. In the presence of the retarding solvents, very low or zero initiator exponents were also observed, depending on the nature and concentration of the solvents used. The deviation from the square-root dependence of rate on initiator concentration becomes higher at high solvent and initiator concentrations in general. This novel deviation is explained on the basis of initiator termination, probably via degradative chain transfer involving the solvent-modified initiating complexes and the propagating radicals.  相似文献   

8.
Kinetic studies on methyl methacrylate polymerization were carried out with watersoluble 2,2′-azobisisobutyramidine (ABA). The rate of polymerization was proportional to the square root of the initiator concentration in the solvents chloroform, methanol, and dimethyl sulfoxide (DMSO), which confirms the bimolecular nature of the termination reaction. The monomer exponent was unity in chloroform but in methanol and DMSO the rate of polymerization passed through a maximum when plotted against the monmer concentration. This behavior in methanol has been attributed to be due to the enhanced rate of production of radical with increasing proportion of methanol. The rate of decomposition of the ABA has been observed to be faster in methanol than in chloroform. The situation becomes more complicated with DMSO, which was found to reduce the value of δ = (2kt)1/2/kp in methyl methacrylate polymerization. The rate of polymerization was observed to be highly dependent on the nature of the solvent, the rate increasing with increased electrophilicity of the solvent. The dependence of Rp on the solvent has been explained in the light of the stabilization of the transition state due to increased solvation of the basic amidine group of the initiator with the increased electrophilicity of the solvent.  相似文献   

9.
Kinetics of solution polymerization of styrene was studied using pyridine as solvent and BZ2O2 and azobisisobutyronitrile (AIBN) as initiators at 60°C. Normal kinetic features (Rp ∝ [AIBN]0.5 · [styrene]1.0) were observed for the AIBN-initiated polymerization, with pyridine playing the role of an inert diluent; but in the BZ2O2-initiated polymerization, the monomer exponent was found to vary from a low value of 0.45 at a relatively low initiator concentration (1 × 10?2 mole/liter) to a value higher than the usual value of unity (1.18) at a much higher concentration of the initiator (16 × 10?2 mole/liter). The initiator exponent value was found to be 0.5 (usual) up to 20% v/v dilution with pyridine, but it showed a tendency to decrease with increase in pyridine content beyond 20% v/v. The k/kt value for each initiator system, however, was found to remain constant over the whole concentration range of pyridine. The unusual kinetic features were explained on the basis of predominance of one or the other of two competitive reactions in BZ2O2-initiated system: (a) higher rate of decomposition of BZ2O2 in pyridine and (b) primary radical depletion by reaction with pyridine, depending upon the concentration of BZ2O2 and pyridine.  相似文献   

10.
Polymerization of MMA was carried out in presence of visible light (440 nm), quinoline-bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was observed to be 0.5 up to 0.014 M initiator concentration; when chloroform was used as the solvent, the monomer exponent was found to be unity. The polymerization was inhibited in presence of hydroquinone but little inhibitory effect was observed in the presence of air. An average value of k2p/kt for this photopolymerization system was found to be (1.08 ± 0.22) × 10-2. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

11.
Photopolymerization of MMA in visible light was studied at 40 using THF-SO2 complex as the photoinitiator. Initiator exponent was 0.19 and monomer exponent lay between 1.0 and 1.5, depending on thenature of solvent. Analysis of kinetic and other data indicate that the polymerization proceeds by a radical mechanism and termination is initiator dependent. Chain termination via degradative chain (initiator) transfer appears to be significant feature.  相似文献   

12.
The photosensitized polymerization of styrene in bulk was investigated in the temperature range of 25–70°C with respect to the average rate coefficient of bimolecular chain termination t, especially its chain length dependence at low conversions, by means of pulsed laser polymerization (PLP). Three methods were applied: two of them were based on equations originally derived for chain length independent termination taking the quantity kt contained therein as an average t, while the third one consisted in a nonlinear fit of the experimental chain length distribution (CLD) obtained at very low pulse frequencies (LF‐PLP) to a theoretical equation. The exponent b characterizing the extent of chain length dependence was unanimously found to decrease from about 0.17–0.20 at 25°C to 0.08–0.11 at 70°C, slightly depending on which of the three methods was chosen. This trend toward more “ideal” polymerization kinetics with rise of polymerization temperature is tentatively ascribed to a quite general type of polymer solution behavior that consists in a (slow) approach to a lower critical solution temperature (LCST), which is associated with a decrease of the solvent quality of the monomer toward the polymer, an effect that should be accompanied with a decrease of the parameter b. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 697–705, 2000  相似文献   

13.
Polymerization of methyl methacrylate (MMA) was kinetically studied under photo condition using near UV visible light at 40°C and employing morpholine (MOR)–chlorine (Cl2) charge transfer (C-T) complex as the photoinitiator. The rate of polymerization (Rp) was dependent on morpholine/chlorine mole ratio; the 1 : 2 (MOR–Cl2) C-T complex acted as the latent initiator complex, C, which underwent further complexation with the monomer molecules to give the actual initiator complex, I. Using 1 : 2 (MOR-Cl2) C-T complex as the latent initiator, the initiator exponent evaluated for bulk photopolymerization of MMA was 0.071 and monomer exponent determined from studies of photopolymerization in benzene diluted system was 1.10. Benzoquinone behaved as a strong inhibitor and the polymers tested positive for the incorporation of chlorine atom end groups. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by low (≪0.5) initiator exponent and a monomer exponent of greater than unity were explained in terms of primary radical termination effect. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1681–1687, 1997  相似文献   

14.
Solution polymerization of MMA, with pyridine as the solvent and BZ2O2 and AIBN as thermal initiators, was studied kinetically at 60°C. The monomer exponent varied from 0.45 to 0.91 as [BZ2O2] was increased from 1 × 10?2 to 30 × 10?2 mole/liter in a concentration range of 8.3-4.6 mole/liter for MMA. For AIBN-initiated polymerization the monomer exponent remained constant at 0.69 as [AIBN] varied from 0.4 × 10?2 to 1.0 × 10?2 mole/liter in the same concentration range for MMA. The k2p/kt Value increased in both cases with an increase in pyridine concentration in the system. This was explained in terms of an increase in the kp value, which was due presumably to the increased reactivity of the chain radicals by donor-acceptor interaction between the molecules of solvent pyridine and propagating PMMA radicals and in terms of lowering the kt value for the diffusion-controlled termination reaction due to an increase in the medium viscosity and pyridine content.  相似文献   

15.
Polymerization of vinyl acetate initiated by β-picolinium p-chlorophenacylide was carried out at 30, 35, and 40°C, using conventional dilatometric technique. The initiator and the monomer exponent values were 0.80 ± 0.15 and unity, respectively. The polymerization was inhibited in the presence of hydroquinone, but was favored by nonpolar solvent and polymerization temperature. The energy of activation was 90.3 KJ mol?1. An average value of k/kt for the present system was found to be 0.37 × 10?2. The results are explained in terms of a radical mode of polymerization with degradative initiator transfer; the principal mode of termination, however, was bimolecular.  相似文献   

16.
Photopolymerization of methyl methacrylate (MMA) was studied at 40°C using a macromolecular C.T. Complex between poly(N-vinyl carbazole) and bromine, expressed in brief as (PNVC–Br2) complex, as the photoinitiator. Initiator exponent was 0.40 for [PNVC–Br2] ≤ 2.5 × 10?3 mol L?1 and practically zero for [PNVC–Br2] > 2.5 × 10?3 mol L?1. Monomer exponent in different diluent systems such as benzene, carbon tetrachloride, and acetone was close to 1.0. Low initiator exponent (<0.5) is explained on the basis of an initiator-dependent termination mechanism, in addition to the usual bimolecular termination. Analysis of kinetic data indicates that the initiator-dependent termination is primarily due to degradative initiator transfer and that due to primary radicals is considered inconsequential in view of monomer exponent being close to unity. The non-ideal termination process assumes over-whelming prominence at high [PNVC–Br2].  相似文献   

17.
The polymerization of vinyl acetate initiated by β-picolinium-p-chlorophenacylide was carried out at 30, 35, and 40°C, using the conventional dilatometric technique. The initiator and the monomer exponent values were 0.80 ± 0.15 and unity, respectively. The polymerization was inhibited in the presence of hydroquinone, but was favored by nonpolar solvent and polymerization temperature. The energy of activation was 90.3 kJ mol?1. An average value of k/kt for the present system was found to be 0.37 × 10?2 L mol?1 s?1. The results are explained in terms of radical mode of polymerization with degradative initiator transfer; the principal mode of termination, however, was biomolecular.  相似文献   

18.
Photopolymerization of MMA with the use of H2O2 as the photoinitiator under visible light at 30°C was studied. Kinetic features in bulk monomer and in the presence of different diluents differ significantly. Usual free radical kinetics with square-root dependence of rate on initiator, indicating bimolecular termination of chain radicals, were observed for bulk polymerization. On dilution with various solvents polymerization was found to be retarded to different (usual and more than usual) extents, the observed monomer exponent value being much higher than unity in many cases. This deviation from normal kinetics has been interpreted in terms of the predominance of degradative initiator transfer in the diluted systems.  相似文献   

19.
The free‐radical polymerization of styrene has been studied in the homogeneous phase of supercritical (sc) CO2 at 80°C and pressures between 200 and 1 500 bar. 2,2'‐Azobisisobutyronitrile is used as initiator and CBr4 as chain‐transfer agent. The polymerization is monitored by means of online FT‐IR/NIR spectroscopy. In the presence of CO2 a solution polymerization may be carried out up to a considerable degree of monomer conversion. At 500 bar, for example, maximum styrene conversions of 34.4 and 11.9% may be reached in homogeneous phase at CO2 contents of 16.8 and 44.5 wt.‐%, respectively. Analysis of the measured conversion‐time profiles yields termination rate coefficients, kt, which are by one order of magnitude larger than kt for styrene bulk polymerizations at identical temperature and pressure. The enhanced termination rate in fluid CO2 is assigned to the poor solvent quality of scCO2 for polystyrene.  相似文献   

20.
Polymerization of MMA was carried out under visible light (440 nm) with the use of pyridine–bromine (Py–Br2) charge-transfer (CT) complex as the photoinitiator. Initiator exponent and intensity exponent were 0.5 and 0.43, respectively, and the monomer exponent was found to be dependent on the nature of the solvent or diluent used. The Polymerization was inhibited in the presence of hydroquinone, but oxygen had very little inhibitory effect. An average value of kp2/kt for this polymerization system was 1.19 × 10?2, and the activation energy of photopolymerization was 4.95 kcal/mole. Kinetic data and other evidence indicate that the overall polymerization takes place by a radical mechanism. With Py–Br2 complex as the photoinitiator, the order of polymerizability at 40°C was found to be MMA, EMA ? Sty, MA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号