首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
报道了一个低阈值宽调谐、被动调Q、单谐振掺MgO的周期性极化铌酸锂晶体(PPMgLN)光学参量振荡器。利用被动调Q的Nd:YVO4激光器作为泵浦源,采用外腔结构,在室温下,实现了PPMgLN晶体的准相位匹配光学参量振荡。光参量振荡的阈值仅为0.27W(单脉冲能量4.5μJ、脉宽35ns);在泵浦光为1.35W(脉冲能量8.2μJ、脉宽35ns),PPMgLN周期为31μm时,获得了161.9mW,3.202μm脉冲激光输出;同时获得了98.5mW的1.594μm信号光输出,总的光光转化效率达到19.3%。通过改变晶体的周期,实现了闲频光3.13~4.19μm,信号光1.43~1.65μm的宽带可调谐激光输出。  相似文献   

2.
Chen HC  Hsiao CY  Ting WJ  Lin ST  Shy JT 《Optics letters》2012,37(12):2409-2411
We report the frequency stabilization of a CW single-frequency, singly resonant optical parametric oscillator (OPO) to the saturation absorption center of the (12)C(16)O2[10°1,02°1](II)>←00°0 P(14) line at 2.77 μm. The CO2 molecules were excited by the OPO idler wave, and the absorption signal was monitored through the fluorescence at 4.3 μm using a gold-coated longitudinal cell. The idler frequency was stabilized onto the line center by wavelength modulation method. The linewidth of the saturation dip was estimated to be 4.7 MHz, and the achieved frequency stability was 3.9 kHz (3.6×10(-11)).  相似文献   

3.
P. Jiang  S. Cai  B. Wu  D. Yang  J. Kong  Y. Shen 《Laser Physics》2009,19(6):1220-1222
A high-energy PPMgLN optical parametric oscillator (OPO) pumped by a E-O Q-switched Nd:YAG laser working at 1.064 μm was successfully illustrated. A maximum output pulse energy of 3.4 mJ was obtained with a pump threshold of 1.5 mJ and a slope efficiency of 30% around room temperature. The OPO output signal and idler wavelength were 1552 and 3384 nm, respectively. The damage to the input surface of PPMgLN crystal was carefully observed with a damage threshold of 4.6 J/cm2.  相似文献   

4.
We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.  相似文献   

5.
The total pulse energy of the signal and idler in a near-degenerate type-I periodically poled KTiOPO4 (PPKTP) optical parametrical oscillator (OPO) was spectrally confined within a 2 nm spectral bandwidth at 2.13 μm. This was achieved by using a volume Bragg grating as the output coupler. Both the signal and the idler from the PPKTP OPO were then simultaneously used to pump a mid-infrared ZnGeP2 (ZGP) OPO. The 2 nm bandwidth was narrower than the ZGP crystal acceptance bandwidth and, thus, made efficient conversion in the second OPO possible. A total slope efficiency of 10% from 1.06 μm to the 3.5–5 μm region was demonstrated, generating 250 μJ in the mid-IR with only 3.6 mJ of 1.06 μm pump energy. This corresponds to a Nd:YAG pump to mid-IR conversion efficiency of 7%. PACS 42.65.Yj; 42.72.Ai; 42.40.Eq  相似文献   

6.
We report a femtosecond optical parametric oscillator (OPO) based on the nonlinear material BiB?O? (BIBO) pumped directly by a Kerr lens mode-locked Ti:sapphire laser. Using a 1.5 mm long BIBO crystal cut at θ=11.4° for collinear type I (e→o+o) phase matching in the xz optical plane, femtosecond signal pulses across 1.4-1.6 μm, and idler pulses across 1.6-1.87 μm spectral range are generated, limited by the reflectivity bandwidth of the OPO mirrors. The high nonlinear gain and large spectral acceptance for type I interaction in the xz plane of BIBO permit rapid and continuous tuning across the entire range by simple fine adjustment of OPO cavity delay or through small changes in the pump wavelength, without varying any other parameters. Additionally, owing to the near-zero group velocity mismatch and dispersion, the OPO supports broad spectrum as wide as 33 nm, which results in self-compressed signal pulses. For 150 fs pump pulses, signal pulses with durations down to 106 fs with a time-bandwidth product of 0.48 are obtained without the need for intracavity dispersion compensation.  相似文献   

7.
基于掺MgO周期极化铌酸锂晶体的光学参量振荡器是一种全固态中红外可调谐相干光源.泵浦源为1064 nm声光调Q Nd:YAG激光器.通过温度调谐实现了中红外可调谐参量光的输出,当晶体的温度从40°C升高到200°C时,获得信号光的输出范围为1.561 μm~1.670μm,空闲光的调谐范围为3.342 μm~2.932 μm.当泵浦源脉宽为70 ns,重复频率为10 kHz,平均功率为.161 W,获得波长为1631μm.当泵浦源脉宽为70 ns,重复频率为10 kHz,平均功率为1.61 W,获得波长为1631 nm信号光的输出功率为21 1 mW.  相似文献   

8.
《Optics Communications》2004,229(1-6):325-330
We demonstrate electro-optic spectral tuning in a pulsed periodically poled LiNbO3 (PPLN) optical parametric oscillator (OPO) in ns regime. A 3-cm-long LiNbO3 crystal is segmented in three equal sections; the outer sections are periodically poled. The center segment is of single domain whose refractive index is changed by electro-optic effect. Applying voltage from 0 to −5000 V, the OPO signal and idler waves are tuned from 1.932 to 1.912 μm and 2.368 to 2.40 μm, respectively. The signal and idler waves obtained are difference-frequency-mixed in a 10 mm long AgGaS2 crystal to produce mid-IR tunable from ∼10.5 to ∼9.4 μm, which matches the tuning range of a CO2 laser.  相似文献   

9.
We present a 3 5 μ m optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μ m laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antireflection coated at 2.1 and 3.7 4.6 μ m, is cut as θ =53.5°, φ =0°. When the pump power of 2.1-μ m polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type I phase match. Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μ m, respectively. Pulse duration is about 27 ns. Beam quality factor M 2 is better than 1.8. The tunability of 3 5 μ m can be achieved by changing the angle of the ZGP crystal.  相似文献   

10.
McEwan KJ 《Optics letters》1998,23(9):667-669
Greater than 2 W of average power was generated in the infrared region by a AgGaS(2) optical parametric oscillator (OPO). A Q -switched mode-locked laser was used to pump the OPO synchronously. Tunability from 1.4 to 1.9mum and a maximum output power of 750 mW at 1.44mum were achieved with a standing-wave cavity. Redesigning the cavity into a ring configuration allowed the depleted pump, signal, and idler beams to be extracted efficiently through separate mirrors. This design generated signal and idler beams of high spatial quality at respective power levels of 1.5 and 620 mW at a pulse repetition rate of 2 kHz.  相似文献   

11.
We employed a 9-mm long periodically poled KTiOPO4 (PPKTP) crystal in an optical parametric oscillator (OPO) to generate sub-nanosecond idler pulses around 2.8???m. With a 1-cm long OPO cavity in a singly resonant configuration and double pass pumping by 1-ns pulses at 1,064?nm, the maximum idler energy reached 110???J at 1?kHz. Pumping with 500?ps pulses at 1?C10?kHz, resulted in an idler energy of ~50???J and the shortest pulse duration of ~250?ps, ever reported for an OPO. The corresponding quantum conversion efficiencies were 32.5 and 34.9?%, respectively.  相似文献   

12.
We report a compact, efficient, high-energy, and high-repetition-rate mid-IR picosecond optical parametric oscillator (OPO) based on the new nonlinear material CdSiP(2) (CSP). The OPO is synchronously pumped by a master oscillator power amplifier system at 1064.1 nm, providing 1 μs long macropulses constituting 8.6 ps micropulses at 450 MHz, and it can be tuned over 486 nm across 6091-6577 nm, covering the technologically important wavelength range for surgical applications. Using a compact (~30 cm) cavity and improved, high-quality nonlinear crystal, idler macropulse energy as high as 1.5 mJ has been obtained at 6275 nm at a photon conversion efficiency of 29.5%, with >1.2 mJ over more than 68% of the tuning range, for an input macropulse energy of 30 mJ. Both the signal and idler beams are recorded to have good beam quality with a Gaussian spatial profile, and the extracted signal pulses are measured to have durations of 10.6 ps. Further, from the experimentally measured transmission data at 1064 nm, we have estimated the two-photon absorption coefficient of CSP to be β=2.4 cm/GW, with a corresponding energy bandgap, E(g)=2.08 eV.  相似文献   

13.
We report a compact and viable source of high-efficiency, high-repetition-rate, temperature-tuning, mid-IR optical parametric oscillator (OPO) based on periodically poled MgO-doped lithium niobate (PPMgOLN) pumped by a homemade high power AOM Q-switched Nd:YVO4 laser centered at 1.064 μm. With an optimal plane-concave resonator configuration, average output power of 5.7 W at 2.73 μm was obtained when the pump power was 25 W at the repetition rate of 80 kHz. The conversion efficiency from the 1.064 μm laser to the 2.73 μm laser was 22.8%. Temperature tuning of the OPO yielded a signal wavelength range from 1.67 to 1.75 μm and an idler wavelength in the range of 2.72 to 2.92 μm.  相似文献   

14.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

15.
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm.  相似文献   

16.
We report a continuous-wave optical parametric oscillator (OPO) based on periodically poled RbTiOAsO(4) (PPRTA). The singly resonant OPO, which is located within a Ti:sapphire laser, has a high-finesse signal cavity and delivers a maximum output power of 270 mW to the nonresonant idler wave at 2.92mum , through a 4.5-mm PPRTA crystal. For room-temperature operation and a crystal with a 30-mu;m grating period, pump tuning over 838-848 nm results in OPO tuning over 1.13-1.27mum (signal) and 2.53-3.26mum (idler), limited by the bandwidth of optical coatings. PPRTA exhibits thermal properties superior to those of periodically poled LiNbO(3) .  相似文献   

17.
A CdSe optical parametric oscillator (OPO) pumped by a 2.79-mum , Cr, Er:YSGG laser yielded a 59% signal-plus-idler slope efficiency (eta), a total idler output of 1.2-2.4mJ between 8.5 and 12.3 mum , and an idler beam that was 2.2-2.5 times the diffraction limit. A ZnGeP(2) OPO operated with a lower threshold, eta = 29% , and a forward idler output of 0.7-2.4 mJ from 6.9 to 9.9 microm . The signal and idler bandwidths were typically 4 cm(-1) for each OPO.  相似文献   

18.
Phase-locked 3:1 division of an optical frequency was achieved with a continuous-wave monolithic optical parametric oscillator (OPO) pumped by a 532-nm Nd:YAG laser, by use of 5% MgO-doped LiNbO(3) as a nonlinear optical crystal. The OPO generated signal light (798 nm) with 4-mW power and idler light (1596 nm) with 3-mW power for a pump power of 68 mW. Approximately 2microW of second harmonics (SH's) of the idler light was produced by external-cavity-enhanced SH generation by use of a periodically poled LiNbO(3) crystal. The beat signal between the signal light and the SH of the idler light was observed with a signal-to-noise ratio of 40 dB at a 10-kHz bandwidth and was successfully phase locked to a signal from a synthesizer through the electro-optic effect of the crystal.  相似文献   

19.
A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6–4.7 m infrared wavelength region, using a high power (>20 W), widely tunable (1024–1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved an idler output power of 3 W at 2.954 m. Tuning of the idler frequency was achieved by longitudinal mode-hop tuning of the pump source (FSR 100 MHz). In this way an idler frequency scan of 100–150 GHz could be obtained, after which the signal frequency hops ahead over the FSR of the intracavity etalon of the OPO (207 GHz). Due to un-optimized mirror coatings for the OPO cavity and PPLN crystal, the frequency stability was limited to 90 MHz over 1 s, with an unaffected long-term frequency stability of 250 MHz over 200 seconds. PACS 42.65.Yj; 82.80.Kq; 42.62.Fi  相似文献   

20.
ZnGeP2 single crystals were grown from Vertical Bridgman method. High-quality near-stoichiometric ZnGeP2 single crystals were obtained in the diameter of 30 mm and length of 120 mm. The results showed that after thermal annealing of the crystals the optical absorption coefficient was below 0.03 cm?1 at 2.05 μm, and ~0.02 cm?1 at 3–8 μm. The low absorption loss ZnGeP2 samples with dimension of 6 × 6 × 18 mm3 were cut from the annealed ingots for 3–5 μm optical parametric oscillation (OPO) experiments. For OPO experiment, we obtained up to 8.7 W output in the 3–5 μm wavelength range (with signal of 3.80 μm and idler of 4.45 μm, respectively) pumped by a 16.3 W 2.05 μm Tm,Ho:GdVO4 laser at pulse repetition rate of 10 kHz, which corresponded to a conversion efficiency of 53.4% and slope efficiency of 64.8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号