首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

2.
A sensitive homogeneous immunoassay, using human serum albumin (HSA) as a model analyte coupled with simple visible absorption detection, has been developed. The new assay is based on the use of gold nanoparticles functionalized with the target protein, which compete with the analyte for the binding of a specific polyclonal antibody. The binding of antibodies to the functionalized nanoparticles determines a shift of the visible absorption maximum of the gold colloid, and quantification of the analyte could be obtained as the competitive inhibition of the binding of antibodies to the nanoparticles. The proposed immunoassay has been optimized and successfully applied to measuring HSA in human urine samples, in which results agreed well with those obtained by a nephelometric reference method.  相似文献   

3.
In this work, we develop a simple and rapid sensing method for the visual and fluorescent detection of acetamiprid (AC) based on the inner-filter effect (IFE) of gold nanoparticles (AuNPs) on ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs based dual-emission nanosensor was fabricated by assembling green emissive QDs (QDs539 nm, λem = 539 nm) on the surface of red emissive QDs (QDs661 nm, λem = 661 nm)-doped silica microspheres. The photoluminescence (PL) intensity of RF-QDs could be quenched by AuNPs based on IFE. Acetamiprid can adsorb on the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on RF-QDs was weakened and the PL intensity of RF-QDs was recovered accordingly. Under the optimized conditions, the PL intensity of the RF-QDs/AuNPs system was proportional to the concentration of AC in the range of 0.025–5.0 μg mL−1, with a detection limit of 16.8 μg L−1. The established method had been used for AC detection in environmental and agricultural samples with satisfactory results.  相似文献   

4.
We report the study of the photoluminescence properties of composite conjugated polymer (MEH-PPV)/fullerene (PCBM) nanoparticles as a function of PCBM doping level. The emission properties of individual nanoparticles were studied by Single Particle Spectroscopy (SPS), and distinct changes in vibronic structure with nanoparticle composition were observed. These changes are found to be due to the presence of domains in the nanoparticles with two distinct types of optical signatures, one with molecular and one with aggregate character, for which the abundance and morphology is found to change with PCBM doping levels. Interestingly, highly delocalized structures with a large extent of exciton migration are formed at low PCBM doping levels, while at high PCBM doping levels the exciton collapses into highly localized structures. Furthermore, at very high doping levels phase separation within the MEH-PPV/PCBM nanoparticles is found, even though the reported nanoparticles are only a few tens of nanometers in diameter.  相似文献   

5.
A laser-based double beam absorption detection system for aggregation immunoassays has been developed. The assay was based on the aggregation of gold nanoparticles that are coated with protein antigens in the presence of their corresponding antibodies. The aggregation of the gold nanoparticles results in an absorption change that is monitored at 635 nm using the double beam spectrometer. The noise level of the spectrometer is 1x10(-6)arbitrary units. This corresponds to a tenfold improvement in comparison to commercial absorption detectors and is comparable with previously reported more complicated laser-based absorption spectrometers. The dye Nile-Blue-A was used to test the analytical performance of the system. A limit of detection of 3x10(-8 )M Nile-Blue-A was observed. The relative standard deviation between consecutive measurements was lower than 1.5%. The system is suitable for field applications of aggregation-based immunoassays.  相似文献   

6.
Nietzold C  Lisdat F 《The Analyst》2012,137(12):2821-2826
In this study we describe the use of gold nanoparticles as a fast detection system for the sensitive analysis of proteins. The immunological method allows for protein analysis at the nanogram level, as required for clinical diagnosis. Initially a test protein is used for the development of the assay. The system is subsequently adopted for alpha-fetoprotein, which is a relevant tumor marker. This work demonstrates that antibody functionalized gold nanoparticles can be used for the detection of proteins by forming gold nanoparticle aggregates. The influence of the size of the gold nanoparticles on the sensitivity of the assay is investigated in the range from 20-60 nm particles; the larger particles show here the highest relative changes. The formation of antigen-gold nanoparticle aggregates is detected by an increase in hydrodynamic diameter by dynamic light scattering (DLS). UV/Vis spectroscopy also allows assay monitoring by quantifying the red shift of the plasmon resonance wavelength. Alpha-fetoprotein can be analysed in the concentration range of 0.1-0.4 μg ml(-1). The influence of pH, ionic strength and ratio of sample to Au-NP solution is studied. With this method, the protein AFP can be rapidly detected as demanded for clinical diagnosis.  相似文献   

7.
Guo Y  Wang Z  Shao H  Jiang X 《The Analyst》2012,137(2):301-304
A simple and one-pot method for the synthesis of water-soluble, red-emitting, highly fluorescent gold nanoparticles has been reported using 11-mercaptoundecanoic acid (11-MUA) as the protecting group. We found that the fluorescent gold nanoparticles could selectively detect copper ions in aqueous solution, with a limit of detection of about 87 nM.  相似文献   

8.
Zhang H  Wang L  Jiang W 《Talanta》2011,85(1):725-729
A novel and sensitive label free DNA detection method using gold nanoparticles (GNPs) and Rhodamine B (RB) has been developed. The assay is based on the following two properties. One is the different adsorption properties of single-stranded and double-stranded DNA on GNPs in colloidal solution. The other is the different quenching ability of aggregated GNPs and dispersed GNPs on RB. Un-aggregated GNPs could effectively quench the fluorescence of RB. However, the quenching ability greatly decreases after GNPs aggregated. The hybridization of probe DNA and target DNA is monitored by the fluorescence detection after the RB is added to the solution. Under the optimal experimental conditions, the detection limit of this assay is 2.9×10(-13) mol L(-1).  相似文献   

9.
Gao F  Cui P  Chen X  Ye Q  Li M  Wang L 《The Analyst》2011,136(19):3973-3980
A novel and efficient method to evaluate the DNA hybridization based on a fluorescence resonance energy transfer (FRET) system, with fluorescein isothiocyanate (FITC)-doped fluorescent silica nanoparticles (SiNPs) as donor and gold nanoparticles (AuNPs) as acceptor, has been reported. The strategy for specific DNA sequence detecting is based on DNA hybridization event, which is detected via excitation of SiNPs-oligonucleotide conjugates and energy transfer to AuNPs-oligonucleotide conjugates. The proximity required for FRET arises when the SiNPs-oligonucleotide conjugates hybridize with partly complementary AuNPs-oligonucleotide conjugates, resulting in the fluorescence quenching of donors, SiNPs-oligonucleotide conjugates, and the formation of a weakly fluorescent complex, SiNPs-dsDNA-AuNPs. Upon the addition of the target DNA sequence to SiNPs-dsDNA-AuNPs complex, the fluorescence restores (turn-on). Based on the restored fluorescence, a homogeneous assay for the target DNA is proposed. Our results have shown that the linear range for target DNA detection is 0-35.0 nM with a detection limit (3σ) of 3.0 picomole. Compared with FITC-dsDNA-AuNPs probe system, the sensitivity of the proposed probe system for target DNA detection is increased by a factor of 3.4-fold.  相似文献   

10.
We present a novel lateral flow immunoassay (LFIA) for the simultaneous detection of the pesticides imidacloprid, chlorpyrifos-methyl and isocarbophos based on three competitive immunoreactions. In contrast to previously reported LFIAs, the method is based on the use of four strips. Each has three red channels (three test lines dispensed with different capture reagent) to detect imidacloprid, chlorpyrifos-methyl and isocarbophos respectively. Different channels on each strip are the key to multi-detection, and four strips of LFIA are needed for visual and semi-quantitative read-outs. Under optimized conditions, the LFIA was applied to the determination of three pesticides. The detection time is within 7 min and the detection limits are 50, 100, and 100 μg L?1, respectively. Furthermore, the LFIA was applied to the analysis of spiked Chinese cabbage and soil samples and results were validated by HPLC. Figure
Design of the Lateral Flow Immunoassay. The LFIA made up of four strips (Strip 1 to Strip 4), and each strip dispensed with three kinds of capture antigens on different channels (CH1 to CH3)  相似文献   

11.
12.
We investigated the cellular uptake behavior of non-fluorescent metal nanoparticles (NPs) by use of surface-enhanced Raman scattering (SERS) combined with dark-field microscopy (DFM). The uptake of Au NPs inside a single cell could also be identified by DFM first and then confirmed by z-depth-dependent SERS at micrometer resolution. Guided by DFM for the location of Au NPs, an intracellular distribution assay was possible using Raman dyes with unique vibrational marker bands in order to identify the three-dimensional location inside the single cell by obtaining specific spectral features. Au NPs modified by 4-mercaptobenzoic acid (MBA) bearing its –COOH surface functional group were used to conjugate transferrin (Tf) protein using the 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) reaction. The protein conjugation reaction on Au surfaces was examined by means of color change, absorption spectroscopy, and SERS. Our results demonstrate that DFM techniques combined with SERS may have great potential for monitoring biological processes with protein conjugation at the single-cell level.  相似文献   

13.
A fluorescein derivative (SAMSA) bound to gold nanoparticles of different diameters is investigated by time-resolved fluorescence at the single molecule level in a wide dynamic range, from nanosecond to second time scale. The significant decrease of both SAMSA excited state lifetime and fluorescence quantum yield observed upon binding to gold nanoparticles can be essentially traced back to an increase of the nonradiative deactivation rate, probably due to energy transfer, that depends on the nanoparticle size. A slow single molecule fluorescence blinking, in the ms time scale, has a marked dependence on the excitation intensity both under single and under two photon excitation. The blinking dynamics is limited by a low probability nonlinear excitation to a high energy state from which a transition to a dark state occurs. The results point out a strong coupling between the vibro-electronic configuration of the dye and the plasmonic features of the metal nanoparticles that provide dye radiationless deactivation channels on a wide dynamic range.  相似文献   

14.
Zhang  Yufeng  Zhou  Zhiping  Zheng  Jiahong  Li  Hongji  Cui  Jiuyun  Liu  Siwei  Yan  Yongsheng  Li  Chunxiang 《Mikrochimica acta》2017,184(7):2241-2248
Microchimica Acta - The authors describe a fluorescence based assay for determination of the macrolid antibiotic erythromycin (ERY). It is based in the use of fluorescent gold nanoclusters (AuNCs)...  相似文献   

15.
Gold particles were nucleated on functionalized (i.e., sulfonate or imidazole groups) latex particle surfaces. Gold ions were associated with the functional groups present on the surface of the latex particles by metal‐ligand formation and were then reduced to nucleate gold particles on the particle surface. The use of imidazole groups favored the metal‐ligand formation more effectively compared with sulfonic acid groups, so gold nucleation was investigated on the surface of imidazole‐functionalized model latex particles. The desorption of gold atoms or their surface migration first occurred during the reduction process and then gold nanoparticles were nucleated. The utilization of strong reductants, such as NaBH4 and dimethylamine borane (DMAB) under mildly acidic conditions (i.e., pH 4) led to the deprotonation of imidazole‐rich polymer chains present on the surface of the model latex particles followed by deswelling of hydrophilic polymer surface layers. As a result, well‐dispersed gold nanoparticles were embedded in the hydrophilic polymer surface. On the other hand, the use of weak reductants led to the formation of localized gold aggregates on the surface of the latex particles. The removal of residual styrene monomer is very important because gold ions can be coordinated with the vinyl groups present in styrene monomer and would then be reduced by nucleophilic water addition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 912–925, 2008  相似文献   

16.
Herein, we reported the quenching effect of Ni(2+) on bovine serum albumin protected fluorescent gold nanoparticles (BSA-GNPs). The quenching mechanism was discussed and a static quenching mechanism was proposed. The number of binding sites (n), apparent stability constants (K) and corresponding thermodynamic parameters of BSA-GNPs-Ni(2+) complex were measured at different temperatures. Under optimum conditions, the fluorescence intensity of BSA-GNPs is linearly proportional to nickel concentration from 6.0x10(-8)mol/L to 8.0x10(-6)mol/L with a detection limit of 1.0x10(-8)mol/L. The result indicated that BSA-GNP was a potential Ni(2+) probe.  相似文献   

17.
18.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

19.
The design of two-dyed fluorescent silica nanoparticles for ATP detection is presented. The indicator dye possesses a dipicolyl-amine (DPA) unit complexed with Zn(II) as a receptor function for ATP while a rhodamine derivative is used as the reference dye. The nanoparticles were fully characterized regarding analytical performance, morphology and cytocompatibility.  相似文献   

20.
A major challenge in the area of DNA detection is the development of rapid methods that do not require polymerase chain reaction (PCR) amplification of the genetic sample. The PCR amplification step increases the cost of the assay, the complexity of the detection, and the quantity of DNA required for the assay. In this context, methods that are able to perform DNA analyses with ultrasensitivity have recently been investigated with the aim of developing new PCR-free detection protocols. Functionalized gold nanoparticles have played a central role in the development of such methods. Here, possibilities offered by functionalized gold nanoparticle in the ultrasensitive detection of DNA are discussed. The different functionalization protocols available for gold nanoparticles and the principal DNA detection methods that are able to detect DNA at the femtomolar to attomolar level are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号