首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Our interest is in the study of the MAP/PH/1/1→·/PH/1/K+1 queue with blocking and repeated attempts. The main feature of its infinitesimal generator is the spatial heterogeneity caused by the transitions due to successful repeated attempts. We develop an algorithmic solution by making a simplifying approximation which yields an infinitesimal generator which is spatially homogeneous and has a modified matrix-geometric stationary vector. The essential tool in our analysis is the general theory on quasi-birth-and-death processes.  相似文献   

3.
In this paper we study a queueing model in which the customers arrive according to a Markovian arrival process (MAP). There is a single server who offers services on a first-come-first-served basis. With a certain probability a customer may require an optional secondary service. The secondary service is provided by the same server either immediately (if no one is waiting to receive service in the first stage) or waits until the number waiting for such services hits a pre-determined threshold. The model is studied as a QBD-process using matrix-analytic methods and some illustrative examples are discussed.  相似文献   

4.
离散时间排队MAP/PH/3   总被引:1,自引:0,他引:1  
本文研究具有马尔可夫到达过程的离散时间排队MAP/PH/3,系统中有三个服务台,每个服务台对顾客的服务时间均服从位相型分布。运用矩阵几何解的理论,我们给出了系统平稳的充要条件和系统的稳态队长分布。同时我们也给出了到达顾客所见队长分布和平均等待时间。  相似文献   

5.
K. Sikdar  U. C. Gupta 《TOP》2005,13(1):75-103
We consider a finite buffer batch service queueing system with multiple vacations wherein the input process is Markovian arrival process (MAP). The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. The service- and vacation- times are arbitrarily distributed. We obtain the queue length distributions at service completion, vacation termination, departure, arbitrary and pre-arrival epochs. Finally, some performance measures such as loss probability, average queue lengths are discussed. Computational procedure has been given when the service- and vacation- time distributions are of phase type (PH-distribution).  相似文献   

6.
离散时间服务台可修的排队系统MAP/PH(PH/PH)/1   总被引:5,自引:0,他引:5  
本文研究离散时间可修排队系统,其中顾客的输入过程为离散马尔可夫到达过程(MAP),服务台的寿命,服务台的顾客的服务时间和修理时间均为离散位相型(PH)变量,首先我们考虑广义服务过程,证明它是离散MAP,然后运用阵阵几何解理论,我们给出了系统的稳态队长分布和稳态等待时间分布,同时给出了系统的稳态可用度这一可靠性指标。  相似文献   

7.
We consider a discrete-time single-server queueing model where arrivals are governed by a discrete Markovian arrival process (DMAP), which captures both burstiness and correlation in the interarrival times, and the service times and the vacation duration times are assumed to have a general phase-type distributions. The vacation policy is that of a working vacation policy where the server serves the customers at a lower rate during the vacation period as compared to the rate during the normal busy period. Various performance measures of this queueing system like the stationary queue length distribution, waiting time distribution and the distribution of regular busy period are derived. Through numerical experiments, certain insights are presented based on a comparison of the considered model with an equivalent model with independent arrivals, and the effect of the parameters on the performance measures of this model are analyzed.  相似文献   

8.
系统地研究了两个不同并行服务台的可修排队系统MAP/PH(M/PH)/2,其中两个不同的服务台拥有一个修理工.若其中一台处于修理状态,则另一台失效后就处于待修状态.利用拟生灭过程理论,我们首先讨论了两个服务台的广义服务时间的相依性,然后给出了系统的稳态可用度和稳态故障度,最后得到了系统首次失效前的时间分布及其均值.  相似文献   

9.
We consider a finite capacity queue with Markovian arrivals, in which the service rates are controlled by two pre-determined thresholds, M and N. The service rate is increased when the buffer size exceeds N and then brought back to normal service rate when the buffer size drops to M. The normal and fast service times are both assumed to be of phase type with representations (β, S), and β θS), respectively, where θ>1. For this queueing model, steady state analysis is performed. The server duration in normal as well as fast periods is shown to be of phase type. The departure process is modelled as a MAP and the parameter matrices of the MAP are identified. Efficient algorithms for computing system performance measures are presented. We also discuss an optimization problem and present an efficient algorithm for arriving at an optimal solution. Some numerical examples are discussed.  相似文献   

10.
We consider the MAP/PH/N retrial queue with a finite number of sources operating in a finite state Markovian random environment. Two different types of multi-dimensional Markov chains are investigated describing the behavior of the system based on state space arrangements. The special features of the two formulations are discussed. The algorithms for calculating the stationary state probabilities are elaborated, based on which the main performance measures are obtained, and numerical examples are presented as well.  相似文献   

11.
Customers arriving according to a Markovian arrival process are served at a single server facility. Waiting customers generate priority at a constant rate γγ; such a customer waits in a waiting space of capacity 1 if this waiting space is not already occupied by a priority generated customer; else it leaves the system. A customer in service will be completely served before the priority generated customer is taken for service (non-preemptive service discipline). Only one priority generated customer can wait at a time and a customer generating into priority at that time will have to leave the system in search of emergency service elsewhere. The service times of ordinary and priority generated customers follow PH-distributions. The matrix analytic method is used to compute the steady state distribution. Performance measures such as the probability of n consecutive services of priority generated customers, the probability of the same for ordinary customers, and the mean waiting time of a tagged customer are found by approximating them by their corresponding values in a truncated system. All these results are supported numerically.  相似文献   

12.
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.  相似文献   

13.
The Markovian arrival process (MAP) is used to represent the bursty and correlated traffic arising in modern telecommunication network. In this paper, we consider a single server finite capacity queue with general bulk service rule in which arrivals are governed by MAP and service times are arbitrarily distributed. The distributions of the number of customers in the queue at arbitrary, post-departure and pre-arrival epochs have been obtained using the supplementary variable and the embedded Markov chain techniques. Computational procedure has been given when the service time distribution is of phase type.  相似文献   

14.
This paper deals with a continuous review (s,S) inventory system where arriving demands finding the system out of stock, leave the service area and repeat their request after some random time. This assumption introduces a natural alternative to classical approaches based either on lost demand models or on backlogged models. The stochastic model formulation is based on a bidimensional Markov process which is numerically solved to investigate the essential operating characteristics of the system. An optimal design problem is also considered. AMS subject classification: 90B05 90B22  相似文献   

15.
Abstract

Customers arriving according to a Markovian arrival process are served at a c server facility. Waiting customers generate into priority while waiting in the system (self-generation of priorities), at a constant rate γ; such a customer is immediately taken for service, if at least one of the servers is free. Else it waits at a waiting space of capacity c exclusively for priority generated customers, provided there is vacancy. A customer in service is not preempted to accommodate a priority generated customer. The service times of ordinary and priority generated customers follow distinct PH-distributions. It is proved that the system is always stable. We provide a numerical procedure to compute the optimal number of servers to be employed to minimize the loss to the system. Several performance measures are evaluated.  相似文献   

16.
This paper analyzes a single-server finite-buffer vacation (single and multiple) queue wherein the input process follows a discrete-time batch Markovian arrival process (D-BMAP). The service and vacation times are generally distributed and their durations are integral multiples of a slot duration. We obtain the state probabilities at service completion, vacation termination, arbitrary, and prearrival epochs. The loss probabilities of the first-, an arbitrary- and the last-customer in a batch, and other performance measures along with numerical aspects have been discussed. The analysis of actual waiting time of these customers in an accepted batch is also carried out.  相似文献   

17.
In this paper the distribution of the maximum number of customers in a retrial orbit for a single server queue with Markovian arrival process and phase type services is studied. Efficient algorithm for computing the probability distribution and some interesting numerical examples are presented.  相似文献   

18.
We analyse a single‐server queue in which the server goes through alternating periods of vacation and work. In each work period, the server attends to the queue for no more than a fixed length of time, T. The system is a gated one in which the server, during any visit, does not attend to customers which were not in the system before its visit. As soon as all the customers within the gate have been served or the time limit has been reached (whichever occurs first) the server goes on a vacation. The server does not wait in the queue if the system is empty at its arrival for a visit. For this system the resulting Markov chain, of the queue length and some auxiliary variables, is level‐dependent. We use special techniques to carry out the steady state analysis of the system and show that when the information regarding the number of customers in the gate is not critical we are able to reduce this problem to a level‐independent Markov chain problem with large number of boundary states. For this modified system we use a hybrid method which combines matrix‐geometric method for the level‐independent part of the system with special solution method for the large complex boundary which is level‐dependent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
This paper considers the sojourn time distribution in a processor-sharing queue with a Markovian arrival process and exponential service times. We show a recursive formula to compute the complementary distribution of the sojourn time in steady state. The formula is simple and numerically feasible, and enables us to control the absolute error in numerical results. Further, we discuss the impact of the arrival process on the sojourn time distribution through some numerical examples.  相似文献   

20.
This paper consider the (BMAP1, BMAP2)/(PH1, PH2)/N retrial queue with finite-position buffer. The behavior of the system is described in terms of continuous time multi-dimensional Markov chain. Arriving type I calls find all servers busy and join the buffer, if the positions of the buffer are insufficient, they can go to orbit. Arriving type II calls find all servers busy and join the orbit directly. Each server can provide two types heterogeneous services with Phase-type (PH) time distribution to every arriving call (including types I and II calls), arriving calls have an option to choose either type of services. The model is quite general enough to cover most of the systems in communication networks. We derive the ergodicity condition, the stationary distribution and the main performance characteristics of the system. The effects of various parameters on the system performance measures are illustrated numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号