首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorination reaction behavior of Zircaloy-4 (Zry-4) cladding hulls was demonstrated by using a quartz reactor system. By reacting at 380 °C for 3 h, mass of the Zry-4 hulls decreased by 65.8 wt% with Cl2 utilization of 87.1 mol%. Composition of collected product was analyzed and it was revealed that concentration of Zr was higher than 99.97 wt%. The purity of Zr in the experimental result was higher than expectation when considering Sn (1.31 wt%) and Fe (0.25 wt%) contents which can produce gaseous SnCl4 and FeCl3 at the experimental condition. Theoretical calculations were performed to clarify the high purity of Zr by using the HSC code. The simulation results revealed that formation of ZrCl4 is more preferred than SnCl4, FeCl3, and CrCl3. The preference of chloride formation was confirmed by the theoretical calculation, and it was suggested that the major constituents of Zry-4 might react with Cl2 to produce chlorides in an order of ZrCl4 > CrCl3 > SnCl4 > FeCl3. It was also suggested that continuous removal of ZrCl4 and sufficient supply of Zr source during the chlorination reaction might have contributed to the high purity of Zr.  相似文献   

2.
The effect of fuel burn-up on the radioactivation behavior of cladding hull materials was investigated using the ORIGEN-S code for various materials of Zircaloy-4, Zirlo, HANA-4, and HANA-6 and for various fuel burn-ups of 30, 45, 60, and 75 GWD/MTU. The Zircaloy-4 material is the only one that does not contain Nb as an alloy constituent, and it was revealed that 125Sb, 125mTe, and 55Fe are the major sources of radioactivity. On the other hand, 93mNb was identified as the most radioactive nuclide for the other materials although minor radioactive nuclides varied owing to their different initial constituents. The radioactivity of 94Nb was of particular focus owing to its acceptance limit against a Korean intermediate-/low-level waste repository. The radioactivation calculation results revealed that only Zircaloy-4 is acceptable for the Korean repository, while the other materials required at least 4,900 of Nb decontamination factor owing to the high radioactivity of 94Nb regardless of the fuel burn-up. A discussion was also made on the feasibility of Zr recovery methods (chlorination and electrorefining) for selective recovery of Zr so that it can be disposed of in the Korean repository.  相似文献   

3.
Chlorination reaction behavior of Zircaloy-4 (Zry-4) was simulated by using the HSC code for three different chlorinating reagents of Cl2, HCl, and CCl4. Four major components (Zr, Sn, Fe, and Cr) of Zry-4 and their oxides which were produced during an oxidative decladding process were considered for the theoretical calculation. The simulation results revealed that Cl2 might convert metallic Zr, Sn, Fe, and Cr into their chloride forms, while oxides might not react with Cl2 at 380 °C. When HCl was employed as the chlorinating reagent, it was suggested that metallic Zr, Sn, and Cr might react with HCl while Fe and oxides might not. In the case of CCl4, it was shown that CCl4 could react with all of the metallic and oxide components to produce most amount of ZrCl4 when compared with Cl2 and HCl cases. Reaction behavior of the chlorinating reagents with residual spent nuclear fuel constituents (U3O8, MoO3, Pd, BaO, Y2O3, SrO, Rh2O3, RhO2, La2O3, CeO2, and Nd2O3) was also performed, and it was revealed that Cl2 and HCl might produce (PdCl2, BaCl2, SrCl2, RhCl3, LaCl3, and NdCl3) and (BaCl2, YCl3, SrCl2, RhCl3, LaCl3, and NdCl3), respectively. Although these by-products are produced, it was suggested that highly pure ZrCl4(g) which contains FeCl3(g) and SnCl4(g) as impurities might be recovered when Cl2 or HCl is employed as a chlorinating reagent because other by-products have higher boiling point than the reaction temperature of this study (380 °C). On the other hand, the theoretical calculation results showed that CCl4 might react with all the residual spent fuel constituents to produce additional gaseous impurities of UCl6 and MoCl5 to reduce the purity of ZrCl4 product.  相似文献   

4.
The heat transport purification system of CANDU nuclear reactors is used to remove particulates and dissolved impurities from the heat transport coolant. Zirconium dioxide shows some potential as a high-temperature ion-exchange medium for cationic and anionic impurities found in the CANDU heat transport system (HTS). Zirconium in the reactor core can be neutron activated, and potentially can be dissolved and transported to out-of-core locations in the HTS. However, the solubility of zirconium dioxide in high-temperature aqueous solutions has rarely been reported. This paper reports the solubility of zirconium dioxide in 10−4 mol⋅kg−1 LiOH solution, determined between 298 and 573 K, using a static autoclave. Over this temperature range, the measured solubility of zirconium dioxide is between 0.9 and 12×10−8 mol⋅kg−1, with a minimum solubility around 523 K. This low solubility suggests that its use as a high-temperature ion-exchanger would not introduce significant concentrations of contaminants into the system. A thermodynamic analysis of the solubility data suggests that Zr(OH)40 likely is the dominant species over a wide pH region at elevated temperatures. The calculated Gibbs energies of formation of Zr(OH)40(aq) and Zr(OH)4(am) at 298.15 K are −1472.6 kJ⋅mol−1 and −1514.2 kJ⋅mol−1, respectively. The enthalpy of formation of Zr(OH)40 has a value of −1695±11 kJ⋅mol−1 at 298.15 K.  相似文献   

5.
The subject of this work is ethylene polymerisation using Kaminsky type catalysts: Cp2MR2=methylaluminoxane [M=Zr, W, Nb; R=Cl, CH3]. Active center determination and kinetic studies of the (Cp2WCl2+methylaluminoxane) and Cp2ZrCl2+methylaluminoxane) systems are described, using a quenching method with tritiated methanol. The activity of the polymer was determined by liquid scintillation counting. We have found 0.5% and 87% of active centers, respectively for W and Zr system. The catalytic activity of complexes Cp2WCl2 and Cp2NbCl2 was compared with that of Cp2ZrCl2. The W and Nb complexes are found to be less active than the Zr complex.  相似文献   

6.
The polymerization behavior of 2-(2′-pyridyl) quinoxaline nickel dibromide/Cp2ZrCl2/MAO system was investigated in three ways: the Ni catalyst was added first, followed by addition of Zr catalyst (method I); the Ni and Zr catalysts were added simultaneously (method II); and the Zr catalyst was added first, followed by addition of Ni catalyst (method III). Results of GC-MS, GPC,13C NMR and DSC investigations indicated that the properties of resulting polyethylene were greatly varied by changing feeding orders of the two catalysts. Decreasing Ni/Zr molar ratio or increasing polymerization temperature gave corresponding polyethylenes with less branches and higher melting point. Compared to the procedure using Cp2ZrCl2 catalyst only, the activity of Zr catalyst in those combined system decreased because of the competition of ethylene between the [Ni−C] and [Zr−C] active centers. In addition, other zirconocenes were also employed as copolymerization catalysts in the combined system with nickel complex. compared to Cp2ZrCl2 case, the ethyl-bridged Zr catalyst performed better for polymerization of ethylene while the Si-bridged Zr catalyst showed better copolymerization ability.  相似文献   

7.
This work describes the preparation of [PNP]ZrX3 ([PNP] = [N(o-C6H4PiPr2)2]; X = Cl, Me, CH2SiMe3) whose structural preference is found to be a function of the electronic and steric nature of the monodentate ligand X. The reaction of ZrCl4(THF)2 with [PNP]Li in toluene at room temperature generates [PNP]ZrCl3 as a red solid in 60% yield. Alkylation of [PNP]ZrCl3 with three equivalents of Grignard reagents in diethyl ether at −35 °C produces cleanly [PNP]ZrR3 (R = Me, CH2SiMe3) as yellow crystalline materials. An X-ray diffraction study of [PNP]ZrCl3 showed it to be a chloride-bridged binuclear species {[PNP]ZrCl2(μ−Cl)}2 in which both zirconium atoms are 7-coordinate whereas that of [PNP]ZrMe3 revealed a mononuclear, 6-coordinate core structure. Interestingly, with the incorporation of more sterically demanding alkyls, [PNP]Zr(CH2SiMe3)3 is a 5-coordinate compound wherein the amido phosphine ligand is κ2-N,P bound to zirconium. The solution structures of these molecules were also assessed by variable-temperature NMR spectroscopy.  相似文献   

8.
The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.  相似文献   

9.
The new Zirconium(IV) coordination compound [Ph4P]2[(ZrCl4Py)2O] (Ph = phenyl, Py = pyridine) was synthesized by dissolving ZrCl4, [Ph4P]Cl and a stoichiometric amount of NaOH/Na mixture in pyridine or pyridine/organic solvent mixtures. The title phase was obtained as colourless crystals. The crystal structure of [Ph4P]2[(ZrCl4Py)2O] was determined. It crystallizes monoclinic, P21/c, Z = 4, a = 13.412(2), b = 13.461(2), c = 16.442(3) Å, β = 102.72(1)°. The structure consists of isolated tetraphenylphosphonium cations and [(ZrCl4Py)2O]2? complex anions. The centrosymmetric complex anion contains a linear Zr–O–Zr bridge. Each Zr atom is coordinated by one oxygen dianion, the N atom of one pyridine ring and four chloro ligands in a distorted octahedral geometry. The Raman spectrum of [Ph4P]2[(ZrCl4Py)2O] is also reported. Most of the observed frequencies can be assigned to vibrations of the tetraphenylphosphonium cations and the pyridine rings.  相似文献   

10.
Azido Complexes of Zirconium: ZrCl3N3, [ZrCl4N3]22?, [ZrCl4(N3)2]2?; Crystal Structure of (PPh4)2 [ZrCl4N3]2 Highly explosive ZrCl3N3 is formed by the reaction of ZrCl4 with iodine azide in dichloromethane suspension. According to the i.r. spectra, the compound is polymeric by azide and chlorine bridges. Zirconium tetrachloride reacts with one and two moles of tetraphenylphosphonium azide respectively, forming the thermally and mechanically stable complexes (PPh4)2[ZrCl4N3]2 and (PPh4)2[ZrCl4(N3)2]. The crystal structure of (PPh4)2[ZrCl4N3]2 was determined by X-ray methods (1942 reflexions, R = 6.5%). The complex crystallizes in the monoclinic space group P21/n with two formula units per unit cell. The structure consists of tetraphenylphosphonium cations and dimeric anions [ZrCl4N3]22?, in which the Zr atoms are linked by the α-N atoms of the azide groups, forming a centrosymmetric Zr2N2 ring with symmetry D2h. According to the i.r. spectra, the azide groups in the complex (PPh4)2[ZrCl4(N3)2] are covalently bonded at the Zr atom in trans positions.  相似文献   

11.
The reaction of ZrCl4 with four equivalents of the 6,6-dimethylcyclohexadienyl anion (6,6-dmch) in the presence of PMe3 leads to the 18 electron Zr(6,6-dmch)2(PMe3)2. This complex was found to undergo a coupling reaction with two equivalents of PhCHNPh, such that the couplings involved the two termini of the same dienyl ligand, yielding a formal Zr(η5-dienyl)(η3-allyl)(π-amide)2 complex. Both metal complexes have been structurally characterized.  相似文献   

12.
Liquid-liquid extractions of zirconium(IV) from aqueous HCl solutions by mixtures of Aliquat 336 or Alamine 336 and diocytl sulfoxide (DOSO) in the diluent benzene has been found to be always higher than that by any single extractant. While the cationic extractants extract Zr(IV) above 6M HCl, DOSO extracts from 4M onwards. Synergism has been observed in all cases. With any of these extractants extraction becomes almost quantitative at and above 10M HCl, but with mixtures of the cationic and neutral extractants, extraction is quantitative in the range 8–9M HCl. Although the extracted species with DOSO alone seems to be ZrCl4·DOSO, with the mixture of extractants, however, the extracted species appear to be Q2ZrCl6·DOSO where Q is R3 +NH (for Alamine 336) and R3 +N(CH3) (for Aliquat 336). Studies on separation of95Zr–95Nb pair from aqueous HCl media by Alamine 336 or DOSO and their mixtures in benzene exhibit preferential extraction of95Nb leaving behind95Zr in the aqueous phase, and extractions have been found to depend both upon the extractant and HCl concentrations.  相似文献   

13.
Variations of125Sb valency states in HCl solutions were investigated by the use of the N-benzoyl-N-phenyl-hydroxylamine (BPHA) extraction method.125Sb(V) is completely reduced to Sb(III) by one hour refluxing in conc. HCl.125Sb(III) is gradually oxidized to Sb(V) in solutions of low HCl concentrations by the effects of their own radiations. Natural light promotes such oxidation reactions. By utilizing such oxidation-reduction effects125Sb(V) can be easily prepared from125Sb(III) and also125Sb(III) can be prepared by the reduction of Cl aq . Their valency states were stable on keeping them in brown-colored bottles at 6M HCl concentrations.  相似文献   

14.
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3]+ (MeGlyH+) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonites [high‐purity montmorillonite (MMT)‐MeGlyH+] had larger interlayer spacing (12.69 Å) than montmorillonites without treatment (9.65 Å). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT‐MeGlyH+] had much higher Zr loading and higher activities than those of other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT‐MeGlyH+, Cp2ZrCl2/MAO/MMT, [Cp2ZrCl]+[BF4]/MMT, [Cp2ZrCl]+[BF4]?/MMT‐MeGlyH+, [Cp2ZrCl]+[BF4]?/MAO/MMT‐MeGlyH+, and [Cp2ZrCl]+[BF4]?/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (Cp2ZrCl2/MAO/MMT‐MeGlyH+). MeGlyH+ and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1892–1898, 2002  相似文献   

15.
Adsorption of long-lived 125Sb radioisotope (T 1/2 = 2.75 y) on alumina (Al2O3) and titania (TiO2) has been studied at different pH. Both the oxides have good adsorption capability for the 125Sb radioisotopes but the TiO2 is much superior. Adsorption kinetics of 125Sb radioisotopes on TiO2 surface and desorption of 125Sb radioisotopes from TiO2 surface in acidic and alkaline media have also been studied. The 125Sb-TiO2 phase has been subjected to γ-irradiation and found to be radiation stable against antimony release.  相似文献   

16.
Green-light-emitting long-lasting phosphorescence phosphor, Eu2+ activated calcium magnesium chlorosilicate Ca8Mg(SiO4)4Cl2, has been prepared by a modified solid-state reaction method using Ca2SiO4:Eu2+ as a precursor. Its properties have been discussed and analyzed utilizing XRD, photoluminescence, excited-state decay curve and long-lasting phosphorescence decay curve. Upon UV light excitation, the emission spectrum of Ca8Mg(SiO4)4Cl2:Eu2+ phosphor is composed of two separate bands centered at 425 nm and 505 nm, respectively. Furthermore, after irradiation by a 320-nm UV light for 3 min, the 2% Eu2+-doped Ca8Mg(SiO4)4Cl2 phosphor emits intense green-light-emitting afterglow from the 4f65d1→4f7 transition of Eu2+, and its afterglow can be seen with the naked eye in the dark clearly for more than 3 h after removal of the excitation source. The disappearance of the high-energy 425 nm band in the afterglow emission spectrum is explained by its different crystallographic sites. The afterglow decay curve of the Eu2+-doped Ca8Mg(SiO4)4Cl2 phosphor contains a fast decay component and another slow decay one. The possible mechanism of this long-lasting phosphorescence phosphor is also discussed based on the experimental results.  相似文献   

17.
Raman spectra of some solid and molten PCl5–ZrCl4 mixtures have been recorded. ZrCl6 2– complex ions accompanied by at least one more chlorozirconate species are present in the solid as well as in the melt. The newRaman frequencies are attributed to ZrCl5 , which fundamentals are given and assignment is proposed to be analogous to TiCl5 . The presence of ZrCl6 2– and ZrCl5 can be explained by the equilibrium ZrCl6 2–+PCl4 +ZrCl5 +PCl5.
  相似文献   

18.
The synthesis and characterization of the novel zirconium (IV) tris(pyrazolyl)borate compound {TpMs*}ZrCl3 ( 1 ) (TpMs* = hydridobis(3‐mesitylpyrazol‐1‐yl)(5‐mesitylpyrazol‐1‐yl)), as well as its performance in polymerizing ethylene are described. The reaction of ZrCl4 with 1 equivalent of TlTpMs* in toluene at room temperature affords 1 as a white solid in 62% yield. Compound 1 in the presence of MAO showed remarkable productivity using a low Al : Zr molar ratio (6.79×104 kg of PE/(mol Zr·h·[C2H4]); toluene, 60°C, Al/Zr = 100). Under identical polymerization conditions, compound 1 and Cp2ZrCl2 showed comparable productivities. Compound 1 displayed similar productivities at temperatures in the range of 0–75°C and noticeable productivity at 105°C. The viscosity‐average molecular weight of the polyethylenes depends on the Al : Zr molar ratio and polymerization temperature and varied between 1.09 and 8.98×105 g·mol–1.  相似文献   

19.
[(η5-C5H5)ZrCl25-C5H4)CMe2(C5H5)] reacted with Co2(CO)8 to produce a heterodinuclear Zr(IV)-Co(I) complex [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)Co(CO)2] (3). Complex 3 underwent oxidative addition of I2 to give [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(CO)] (4) having Zr(IV) and Co(III) centers. The carbonyl ligand of 4 was easily replaced with P(OMe)3 and PPh3 to afford [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(L)] (5: L = P(OMe)3, 6: L = PPh3). Structures of 5 and 6 were determined by X-ray crystallography. These Zr-Co heterodinuclear complexes catalyzed polymerization of ethylene and propylene.  相似文献   

20.
A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L− 1 H2SO4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g− 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g− 1) for Sb(V) and 5.1% (4.6 ng g− 1) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g− 1 and Sb(V) from 14.7 to 21.2 ng g− 1. The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号