首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
以麻纤维和芦苇纤维制备的植物多元醇为原料,合成具有良好性能的生物降解 性硬质聚氨酯泡沫体,其密度40 kg/m~3左右,压缩强度150 kPa,弹性模量4 MPa 。而且多元醇中植物原料含量越大,其性能越好,这使植物原料的充分利用和材料 生产成本的降低成为可能。土壤掩埋实验表明,泡沫体有很好的土壤微生物降解性 。  相似文献   

2.
聚合物多元醇分散体的流变特性   总被引:1,自引:0,他引:1  
聚合物多元醇分散体(以下简称分散体)是接枝聚醚多元醇、聚醚多元醇和乙烯基单体聚合物的混合物,直接用于制备高回弹、高负载和阻燃的软质和半软质聚氨酯泡沫体,是新一代聚醚多元醇产品[1].分散体用于聚氨酯工业中各种产品的生产,除要求有良好的稳定性外,其最为重要的指标是粘度应小于3000mPa·s和乙烯基单体聚合物的含量(固含量)应大于40%.但分散体的粘度,随固含量的增加呈指数性增加[2].近年来,已有既具高固含量和良好稳定性,又有较低粘度的分散体的研究报道[3].本文在不同的反应条件下,合成了分散体,测定了其流变特性和体系中微粒的大小…  相似文献   

3.
以聚醚多元醇(N220、N330)、聚酯多元醇(PNA)和液化二苯基甲烷二异氰酸酯(MDI)为主要原料,采用一步法制备软质聚氨酯泡沫。通过红外光谱、拉伸和回弹实验、热重分析及光学显微镜观察拍摄对泡沫产品的结构、拉伸性能、回弹性、热稳定性及泡孔结构进行了分析,并研究了PNA的加入量及不同催化剂比例对产品性能和泡孔结构的影响。结果表明:PNA的加入量为15%时,泡沫产品的各项性能最佳;当双(二甲胺基乙基)醚(A-1)∶三乙醇胺(TEOA)∶辛酸亚锡(T-9)=0.1∶0.6∶0.2时,泡孔结构均匀、力学性能良好。  相似文献   

4.
耐高温聚酰亚胺泡沫材料   总被引:1,自引:0,他引:1  
聚酰亚胺泡沫具有低介电、隔热、吸声、高比强度以及高经济效益等诸多优点,因而近些年来在航空、航天、船舶航舰、能源与环境保护等领域有着广泛的应用。聚酰亚胺泡沫按照泡孔结构分为软质开孔泡沫和硬质闭孔泡沫两大类,其通常是由芳香族二酐与芳香族二胺通过缩聚反应制备得到分子量可控的聚酯铵盐,再将其作为前驱体经过热发泡制备得到最终的聚酰亚胺泡沫。前驱体的化学结构对最终的聚酰亚胺泡沫的机械性能和热性能都有非常显著的影响,同时前驱体的分子量也会对泡沫的密度、机械性能和热性能有非常显著的影响。聚酰亚胺泡沫的研究进展,特别是其化学结构、性能和应用都会在本文中逐一阐述。  相似文献   

5.
聚酰亚胺泡沫材料的制备与性能表征   总被引:1,自引:0,他引:1  
采用3,3′,4,4′-二苯甲酮四甲酸二酐(酮酐,BTDA)和4,4′-二氨基二苯甲烷(MDA)为主要原料制备了一种聚酰亚胺泡沫材料.采用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H-NMR)、扫描电镜(SEM)、导热系数测定仪、热失重分析(TGA)、差式扫描量热分析(DSC)及驻波管分别对前聚体粉末化学结构、泡沫泡孔结构、热性能及声学性能进行了表征.研究结果表明前聚体粉末以聚酰胺酯和铵盐两种形式存在,所得泡沫泡孔均匀,并且随前聚体干燥温度升高,泡孔尺寸变小.泡沫的导热系数λ为7.62×10-3W/(m.K),失重5wt%的分解温度Td5为540℃,玻璃化转变温度Tg为306℃,表明其具有优良的隔热耐热性.并且由声学测试可知在0~2000Hz频率范围内,吸声系数可达0.79,传声损失可达19.4dB,具有低频吸声、隔声性.  相似文献   

6.
本文以亚磷酸二乙酯和二乙醇胺为原料合成了一种新型反应型无卤阻燃剂N,N’-双(2-羟乙基)磷酸二乙酯(DEHPA),采用红外光谱、核磁氢谱、核磁碳谱以及核磁磷谱表征了其化学结构。利用DEHPA制备了本质阻燃硬质聚氨酯泡沫材料,通过氧指数(LOI)、水平燃烧测试研究了材料的阻燃性能。同时利用热重分析表征了阻燃剂以及泡沫材料的热稳定性。测试结果表明,当DEHPA以30份替代聚醚多元醇时,聚氨酯硬泡LOI值从19.5%提高到23.6%,通过水平燃烧HB级,继续提高阻燃剂添加量,材料阻燃性能进一步提高。热重分析的结果表明DEHPA可以促进聚氨酯硬泡提前分解并具有优良成炭性能。  相似文献   

7.
以高温煤焦油为原料,部分替代石油基苯酚合成可发泡性酚醛树脂,通过发泡工艺制备煤焦油酚醛泡沫。利用气相色谱质谱仪和红外光谱仪分别对高温煤焦油和酚醛泡沫进行分析表征;采用光学显微镜、热重分析仪、极限氧指数仪、导热系数仪等对酚醛泡沫的表观形貌、压缩强度、粉化率、热稳定性、阻燃性能和隔热性能进行表征。结果表明,煤焦油酚醛泡沫的压缩强度有所降低,但是泡沫的韧性提高,其粉化率下降。同时煤焦油酚醛泡沫具有良好的热稳定性,当替代率为10%-15%时,极限氧指数最高为36.1%,导热系数最低为0.034 W/(m·K)。这说明,高温煤焦油能够部分替代苯酚制备出性能优良的酚醛泡沫,为高温煤焦油的高值化利用提供了新的思路。  相似文献   

8.
<正> 聚氨酯类灌浆材料是以异氰酸酯和多元醇为主剂的一类灌浆材料。采用的原材料和工艺不同,组成浆液性能、用途、固化物的性质和取得的效果均不同,适用范围很广,是一类优秀的灌浆材料。聚氨酯灌浆的特点可以选用的聚氨酯原材料很多,配方和工艺亦不相同,导致它具有许多不同的性能特点: 1、采用不同的材料和聚合方式,浆液固化后,可以是低密度的泡沫体,也可以是高密度的聚  相似文献   

9.
任小逆  洪玲  高琛琪  田彩云 《应用化学》2018,35(10):1215-1221
为降低船舶甲板的振动和空气噪声,以支化和线性多元醇,低粘度聚合多异氰酸酯(PMDI)为主要原料制得阻尼聚氨酯,并将其铺设于钢甲板与浮动甲板之间。 探讨了基体结构、阻尼填料等对阻尼层固化时间、流平、阻尼和力学等性能的影响,以及铺设阻尼层前后甲板整体的隔声性能。 结果表明,调节支链和线性多元醇的质量比,可以改变基体的交联程度与结构,支化多元醇提高了聚氨酯的固化速率,硬度,以及力学性能;线性多元醇降低了体系的玻璃化转变温度,使阻尼温域移向低温,损耗因子峰值提高。 铺设于现有浮动甲板结构下2 mm聚氨酯阻尼层,可以有效增加整个甲板平均3 dB的隔声量,且在低频区增加量更大。 制得的聚氨酯阻尼层流动性优越,室温固化时间可控,可方便快捷的一次性自流平施工,对于提高现有浮动甲板的降噪性能具有实际的意义。  相似文献   

10.
五溴苯基缩水甘油醚;阻燃PU泡沫;高活性阻燃聚醚多元醇的合成  相似文献   

11.
In this work lignocellulose biomass liquefaction was used to produce biopolyols suitable for the manufacturing of rigid polyurethane foams. In order to better evaluate the mechanism of the process, pure cellulose was applied as a raw material. The effect of time and temperature on the effectiveness of liquefaction and the parameters of resulting biopolyols were characterized. The prepared materials were analyzed in terms of their chemical structure, rheology, thermal and oxidative stability, and basic physical and mechanical properties that are important from the point of view of polyurethane manufacturing. The optimal parameters for the biopolyol production with a 94 % yield were achieved at 150 °C for a 6-h reaction duration. The obtained polyols were characterized by the hydroxyl number of 643 mg KOH/g and enhanced thermal and oxidative stability compared to the polyols obtained at lower temperatures, which is associated with the altered mechanism of liquefaction. The results of rheological tests, analyzed with the use of Ostwald-de Waele and Herschel Bulkley models, revealed that the prepared biopolyols can be classified as pseudoplastic fluids with the viscosity values similar to those of commercially available products. Rigid foams obtained via partial substitution of petrochemical polyol with prepared bio-based one were characterized by slightly increased apparent density and average cell size comparing to unmodified materials. The best mechanical performance was observed for the sample containing 35 wt% of biopolyol in the polyol mixture, which indicates a synergistic effect between the applied polyols. The applied modification delayed thermal degradation of foams due to changes in thermal decomposition process. In conclusion, the presented work confirms that lignocellulose biomass liquefaction can be successfully applied as a manufacturing method of polyols later used in the production of polyurethanes.  相似文献   

12.
A new method for the synthesis of lignin-based liquid polyols was developed. Organosolv lignin was reacted with ethylene carbonate in polyethylene glycol as solvent, leading to a full conversion of the phenolic OH into primary aliphatic OH groups. These aromatic polyols are obtained in a single step, without any purification. Upon modification of the polyethylene glycol molar mass, a wide range of hydroxyl values (IOH) can be covered. The polyols with up to 30%wt lignin have a viscosity suitable for the direct elaboration of polyurethane (PUR) foams. The method presents significant advantages over oxypropylation, the most common method for producing lignin-based polyols since it is performed at ambient pressure, without any toxic chemicals, does not require purification or post treatment, and allows to produce polyols with tunable properties. Four different aromatic polyols were then synthesized to produce rigid PUR foams, with substitution of up to 100% of a standard polyether polyol. The developed polyols showed very high reactivity, allowing to reduce the catalyst content in the PUR formulation by 75%. Rigid PUR foams prepared with 25% substitution of the standard polyol showed properties in the range of commercial PUR foams, with more than 90% closed cells and thermal conductivity of about 25 mW m?1/K, perfectly adequate for thermal insulation applications.  相似文献   

13.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   

14.
In the present work, a thorough thermogravimetric (TG) analysis of bio-based polyurethane–polyisocyanurate (PUR–PIR) foams in both nitrogen and oxygen atmosphere is performed. A sustainable element of the foam is a biopolyol obtained via acid-catalyzed liquefaction of Zostera marina and Enteromorpha Algae biomass. Based on isoconversional analysis and apparent activation energies, several conclusions are obtained. In contradiction to the common understanding, biopolyol based foams exhibit enhanced stability in both oxidative atmosphere and in nitrogen compared to purely petrochemical foams. Relationships between thermal stability and structure of the foams are established. Enhanced stability of bio-based foams in oxygen is attributed to two factors. First is an increased cross-linking density due to higher hydroxyl number of biopolyol compared to petrochemical one. Possibly the presence of more amount of aromatic compounds in the structure of polyols that come from lignin or aromatic ketones contribute to further enhancement of thermal stability. Those results suggest that the studied biobased foams are prospective alternatives to standard petrochemical PUR foams.  相似文献   

15.
Polyether type polyurethane foams (PU) are regular stacks of solid quasi-spherical membranes produced by the reaction of polyisocyanates with polyols of polyether nature in the presence of a catalyst and a blowing agent. Contrary to conventional membrane separations, where a solid membrane is merely a differentially separating agent, or a transport medium, PU foams, apart from separation and preconcentration, also retain, i.e., sorb the species on, or in the membranes. Therefore, PU foam membranes can be considered to act as true sorbents. The membrane properties of PU foam sorbents offer unique advantages over conventional bulk type granular sorbents in rapid, versatile and effective separations and preconcentrations of different compounds from fluid samples. Unloaded PU foam sorbents have received considerable attention in the separation of different trace inorganic species.  相似文献   

16.
Polyurethane foams are disposed of not only at the end of their use but also as scrap during slabstock manufacturing, leading to an environmental and economic problem. Flexible polyurethane foams can be advantageously treated by two-phase glycolysis in order to recover their constituent polyols with an improved quality compared to the single phase processes. The glycolysis comprises a transesterification, which has been traditionally catalyzed by alkanolamines, titanium compounds and acetates. In this work, the performance evaluation of new catalysts based on alkaline, alkaline-earth and transition metal octoate salts has been carried out. The carboxylates have showed different catalytic activities according to their basicity and coordination ability. A reaction mechanism for the polyurethane glycolysis in the presence of the carboxylate catalysts studied has also been proposed. The mechanism involves several steps, including the formation of a metal alkoxylate, coordination-insertion of the alkoxide into the urethane group and transfer from recovered polyol to glycol. Among the octoates studied, lithium and stannous octoates showed a remarkable catalytic activity. They yielded the greatest quality for the recovered polyol as well as the highest decomposition rates.  相似文献   

17.
Polyester seed‐oil derived polyols have been prepared and blended with conventional polyols for making polyurethane elastomers. Miscibility was complete for polypropylene oxide/polyethylene oxide and polytetramethylene oxide (PTMEG). Blends of polyester seed‐oil derived polyols with conventional polyester polyols (polybutylene adipate and ?‐polycaprolactone) were immiscible or nearly so. Furthermore, the phase behavior (miscible vs. immiscible) did not change appreciably for each blend composition explored as a function of temperature at relevant ranges (up to the polyether ceiling temperature). This counter‐intuitive result is found to be actually consistent with calculated solubility parameters for each polyol type and the phase diagrams computed on their basis. The phase behavior of the polyols is shown to have significant effects on the properties of polyurethane elastomers where immiscible polyols cause broadening of the glass transition distribution and significant reduction of ultimate tensile properties. However, here it is shown that immiscible systems containing polyester seed‐oil derived polyols can be transesterified with the appropriate polyol partner of interest to create a new single phase polyol or that the polyester polyol monomers can also be copolymerized to make new single phase polyols, both of which result in improved polyurethane elastomer properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 93–102  相似文献   

18.
This study was focused on evaluating the suitability of a wide range of lignins, a natural polymer isolated from different plant sources and chemical extractions, in replacing 20 wt.% of petroleum-based polyol in the formulation of PU flexible foams. The main goal was to investigate the effect of unmodified lignin incorporation on the foam’s structural, mechanical, and thermal properties. The hydroxyl contents of the commercial lignins were measured using phosphorus nuclear magnetic resonance (31P NMR) spectroscopy, molar mass distributions with gel permeation chromatography (GPC), and thermal properties with differential scanning calorimetry (DSC) techniques. The results showed that incorporating 20 wt.% lignin increased tensile, compression, tear propagation strengths, thermal stability, and the support factor of the developed PU flexible foams. Additionally, statistical analysis of the results showed that foam properties such as density and compression force deflection were positively correlated with lignin’s total hydroxyl content. Studying correlations between lignin properties and the performance of the developed lignin-based PU foams showed that lignins with low hydroxyl content, high flexibility (low Tg), and high solubility in the co-polyol are better candidates for partially substituting petroleum-based polyols in the formulation of flexible PU foams intended for the automotive applications.  相似文献   

19.
Semi-rigid polyurethane (PU) foams were prepared using lignin-molasses- poly(ethylene glycol) polyols. Two kinds of lignin, kraft lignin (KL) and sodium lignosulfonate (LS), were used. Both lignin and molasses polyols were mixed with various ratios and were reacted with poly(phenylene methylene) polyisocyanate (MDI) in the presence of silicone surfactant and di-n-butyltin dilaurate. A small amount of water was used as a foaming agent. The apparent density of PU foams increased with increasing lignin content. The compression strength and elastic modulus linearly increase with increasing apparent density, suggesting that mechanical properties are controllable by changing reaction conditions. The PU foams were amorphous and glass transition was detected by differential scanning calorimetry. The glass transition temperature (Tg ) maintained an almost constant value, regardless of the mixing ratio. This indicates that both the phenolic group of lignin and the glucopyranose ring of molasses act as rigid components in PU crosslinking network structures, and both groups contribute to the main chain motion to the same extent. By thermogravimetry (TG), it was confirmed that PU foams are thermally stable up to around 300 °C. By differential scanning calorimetry, Tg was observed at temperatures from 80 to 120 °C.  相似文献   

20.
Four polyols were prepared by a ring opening of epoxidized soybean oil with HCl, HBr, methanol, and by hydrogenation. Two series of polyurethanes were prepared by reacting the polyols with two commercial isocyanates: PAPI and Isonate 2143L. Generally, the properties of the two series were similar. The crosslinking density of the polyurethane networks was analyzed by swelling in toluene. Brominated polyols and their corresponding polyurethanes had the highest densities, followed by the chlorinated, methoxylated, and hydrogenated samples. The polyurethanes with brominated and chlorinated polyols had comparable glass transition and strength, somewhat higher than the polyurethane from methoxy containing polyol, while the polyurethane from the hydrogenated polyol had lower glass‐transition and mechanical properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4062–4069, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号