首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
We have performed first-principles calculations on the (001) surface of cubic SrHfO(3) and SrTiO(3) with SrO and BO(2) (B = Ti or Hf) terminations. Surface structure, partial density of states, band structure, and surface energy have been obtained. For the BO(2)-terminated surface, the largest relaxation appears on the second-layer atoms but not on the first-layer ones. The analysis of the structure relaxation parameters reveals that the rumpling of the (001) surface for SrHfO(3) with SrO termination is stronger than that for SrTiO(3). For the HfO(2)-terminated surface of SrHfO(3), the surface state appears near the M point of its band structure.  相似文献   

2.
This study investigates the adsorption and reactions of boron trichloride and its fragments (BClx) on the TiO2 anatase (101) and rutile (110) surfaces by first-principles calculations. The results show that the possible absorbates on the TiO2 anatase and rutile surfaces are very similar. The single- and double-site adsorption configurations are found for both anatase and rutile surfaces. The particular adsorbate feature on the anatase surface is its in-plane double-site adsorption by Ti and O from its sawtooth surface. The potential energy surface shows that BCl3 can be adsorbed on the O site for both the anantase and rutile surfaces and the most of the BClx reaction on both anatase and rutile surfaces are endothermic, except for the dissociative reaction on the rutile surface. The energy levels of the BClx reactions between the anatase and rutile surfaces show that the rutile surface has lower energy levels than those of anatase surface. This result reveals that the BClx dissociative adsorption more easily occurs on rutile surface than on anatase surface.  相似文献   

3.
The interaction and reactivity of trimethylamine (TMA) has been studied over clean and oxygen-covered Ru(001) under UHV conditions, as a model for the chemistry of high-density hydrocarbons on a catalytic surface. The molecule adsorbs intact at surface temperature below 100 K with the nitrogen end directed toward the surface, as indicated from work function change measurements. At coverage less than 0.05 ML (relative to the Ru substrate atoms), TMA fully dissociates upon surface heating, with hydrogen as the only evolving molecule following temperature-programmed reaction/desorption (TPR/TPD). At higher coverage, the parent molecule desorbs, and its desorption peak shifts down from 270 K to 115 K upon completion of the first monolayer, indicating a strong repulsion among neighbor molecules. The dipole moment of an adsorbed TMA molecule has been estimated from work function study to be 1.4 D. Oxygen precoverage on the ruthenium surface has shown efficient reactivity with TMA. It shifts the surface chemistry toward the production of various oxygen-containing stable molecules such as H2CO, CO2, and CO that desorb between 200 and 600 K, respectively. TMA at a coverage of 0.5 ML practically cleans off the surface from its oxygen atoms as a result of TPR up to 1650 K, in contrast to CO oxidation on the O/Ru(001) surface. The overall reactivity of TMA on the oxidized ruthenium surface has been described as a multistep reaction mechanism.  相似文献   

4.
In this study, the surface of π-conjugated polymer, poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV), was successfully modified with the sulfate anion (SO(4-)) groups by the confined photo-catalytic oxidation (CPO). After the surface modification, the water contact angle of MEH-PPV is changed from 95.5° to 82.1° without influence on its optical properties (based on the UV and PL spectra), and the water droplet can be absorbed on the modified MEH-PPV surface without sliding even at substrate tilt angles of 90° and 180°. The CPO on the MEH-PPV surface is able to further expand the use of MEH-PPV for applications. In addition, the water transport test indicates that the modified MEH-PPV can be a candidate for transporting water droplet.  相似文献   

5.
The structure of an ordered, ultrathin theta-Al(2)O(3) film grown on a NiAl(100) single-crystal surface was studied by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED), and its interaction with water was investigated with temperature programmed desorption (TPD) and XPS. Our results indicate that H(2)O adsorption on the theta-Al(2)O(3)/NiAl(100) surface is predominantly molecular rather than dissociative. For theta(H)()2(O) < 1 ML (ML = monolayer), H(2)O molecules were found to populate Al(3+) cation sites to form isolated H(2)O species aligned in a row along the cation sites on the oxide surface with a repulsive interaction between them. For theta(H)()2(O) > 1 ML, three-dimensional ice multilayers were observed to form, which then desorb during TPD with approximate zero-order kinetics as expected. A small extent of H(2)O dissociation was observed to occur on the theta-Al(2)O(3)/NiAl(100) surface, which was attributed to the presence of a low concentration of oxygen atom vacancies. Titration of these defect sites with adsorbed H(2)O molecules revealed an estimated defect density of 0.05 ML for the theta-Al(2)O(3)/NiAl(100) system consistent with the ordered nature of the synthesized oxide film.  相似文献   

6.
Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO(2) rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti(4+)(5c)) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E(ads) was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti(4+)(5c) closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti(3+) cations. In this case the dissociative adsorption becomes strongly favoured (E(ads) = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode.  相似文献   

7.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

8.
Polyaniline deposited on As(2)O(3) surface resulted in a new material, which was characterized by infrared spectoscopy, thermogravimetry, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and cyclic voltammetry. The mass percentage of polymer deposited on oxide surface is approximately 13%. The scanning electron microscopy images as well as the X-ray diffraction patterns provided conclusive evidence that the oxide surface is coated by the polymer. The cyclic voltammograms of the polyaniline adsorbed on As(2)O(3) surface showed that the adsorbate exerts remarkable effects on redox processes on this oxide. The pure oxide exhibited two oxidation/reduction peaks at 0.25/-0.06 and 0.47/-0.25 V attributed tentatively to the processes As(2)O(3)(s)+6H(+)+6e(-)=2As(s)+3H(2)O and As(s)+3H(+)+3e(-)=AsH(3)(g), respectively. The polyaniline-coated sample exhibited a better-defined voltammogram in which the first oxidation peak of the oxide had its intensity increased about four times. Copyright 2000 Academic Press.  相似文献   

9.
Chen W  Lam RH  Fu J 《Lab on a chip》2012,12(2):391-395
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS.  相似文献   

10.
We investigated dissociation of X-(H2O)n (X = Cl, I, n = 13-31) by the impact onto a (La0.7Ce0.3)B6(100) surface at a collision energy Ecol of 1-5 eV per water molecule in a tandem time-of-flight mass spectrometer equipped with a translation-energy analyzer. The mechanism of the dissociation was elucidated on the basis of the measurements of the mass spectrum and the translational energies of the product anions, X-(H2O)m (m = 0-4), scattered from the surface. It was concluded that (1) the parent cluster anion impacted on the surface undergoes dissociation on the surface under quasiequilibrium with its characteristic time varying with Ecol and n, and (2) the total collision energy introduced is partitioned preferentially to the translational motions of the products on the surface and to the rotational, the vibrational, and the lattice vibrational motions (surface) in this order. The quasiequilibrium model is applicable, even at the collision energy as low as 1 eV, because the translational modes are found to be statistically distributed while the other modes are not much populated by dynamical and energetics limitation.  相似文献   

11.
The kinetics and dynamics of photocatalyzed dissociation of ethanol on TiO2(110) sur-face have been studied using the time-dependent and time-resolved femtosecond two-photon photoemission spectroscopy respectively, in order to unravel the photochemical properties of ethanol on this prototypical metal oxide surface. By monitoring the time evolution of the photoinduced excited state which is associated with the photocatalyzed dissociation of ethanol on Ti5c sites of TiO2(110), the fractal-like kinetics of this surface photocatalytic reaction has been obtained. The measured photocatalytic dissociation rate on reduced TiO2(110) is faster than that on the oxidized surface. This is attributed to the larger defect density on the reduced surface which lowers the reaction barrier of the photocatalytic reaction at least methodologically. Possible reasons associated with the defect electrons for the acceleration have been discussed. By performing the interferometric two-pulse corre-lation on ethanol/TiO2(110) interface, the ultrafast electron dynamics of the excited state has been measured. The analyzed lifetime (24 fs) of the excited state is similar to that on methanol/TiO2(110). The appearance of the excited state provides a channel to mediate the electron transfer between the TiO2 substrate and its environment. Therefore studying its ultrafast electron dynamics may lead to the understanding of the microscopic mechanism of photocatalysis and photoelectrochemical energy conversion on TiO2.  相似文献   

12.
Photo-grafting of hydrophilic monomer and space arms was used to enhance the hydrophilicity of poly(ether ether ketone)(PEEK) with the aim of extending its application to biological fields. PEEK films were surface modified by UV grafting of acrylic acid(AA) to introduce ―COOH on PEEK surface. Adipic amine was used as a space arm to introduce heparin on PEEK surface based on the condensation reaction between ―NH2 and ―COOH. The modified PEEK(PEEK-COOH, PEEK-NH2 and PEEK-Hep) was characterized by energy-disperse spectroscopy (EDS), X-ray photoelectron spectroscopy(XPS) and water contact angle measurements, which show that heparin was grafted on PEEK surface. The contact angles of modified PEEK films were lower than those of original films, demonstrating a significant improvement of surface hydrophilicity.  相似文献   

13.
Zr(SO4)2和Zr(SO4)2/SiO2超强酸的研究   总被引:10,自引:0,他引:10  
  相似文献   

14.
利用角分辨紫外光电子能谱对低温下(160 K)乙炔(C2H2)气体在Ru()表面的吸附 进行了研究.实验结果表明:乙炔的C-C轴并不平行于衬底表面, C-C轴在<0001>晶向和表 面法线组成的平面内有一定的倾斜.与气相乙炔分子不同,在Ru()表面吸附的乙炔分子的C-H 轴不是沿C-C轴向.  相似文献   

15.
Numerous literature data indicate that the mean heat of adsorption of a monolayer of N(2) (DeltaQ(N(2))) on ice or snow at 77.15 K, determined by volumetric methods, is highly variable, suggesting that ice surface properties strongly depend on its mode of formation and its thermal history. Less numerous data on CH(4) adsorption show smaller variations of DeltaQ(CH(4)). If such variations are real, the extrapolation to atmospheric chemistry models of adsorption parameters measured on laboratory-made ice may be unwarranted. We have measured CH(4) adsorption on variable amounts of a crushed ice sample, to show that when the total surface area of the sample is below a threshold value, DeltaQ(CH(4)) decreases. We identify the cause of this artifact as an error in the molar budget, because the temperature gradient in the tube connecting the introduction and expansion volumes is not taken into account. Performing an adequate molar budget suppresses this artifact, except for ice samples with very small total surface areas, where the resolution of the manometer becomes a limiting factor and a further decrease in DeltaQ(CH(4)) is observed. Error in DeltaQ(gas) results in large errors in surface area, and we suggest that the value of DeltaQ(gas) obtained can be used to test the reliability of the surface area measurement. Copyright 2000 Academic Press.  相似文献   

16.
Hydroxyapatite (HA) has many applications in medicine as a biocompatible and bioactive biomaterial. Numerous studies have shown that modification of the HA surface can improve its biological and chemical properties. However, little is known about the surface properties of modified materials. In this paper the influence of organic polymers: polyethylene glycol (PEG) and polyhydroxyethyl methacrylate (pHEMA) on the surface properties and surface chemistry of hydroxyapatite (HA) is presented. The surface properties of modified HA were characterised by the FT-IR, XPS, BET, and zeta potential measurements. Specific surface area was determined by BET. Infrared and XPS spectra confirmed the presence of PEG and pHEMA on the surface of HA. The BET N2 adsorption revealed slight changes in the HA surface chemistry after grafting modification. The surface chemical properties of the HA were considered to be based on the zeta potential. The decrease in zeta potential results in the increasing stability of the modified material and also in the reduction of bacterial adhesion. The reaction for surface modification of HA is proposed and described.  相似文献   

17.
Extremely high concentrations (>1020 cm-3) of active oxygenic radicals, O- and O2-, have been created in the zeolitic crystal, 12CaO.7Al2O3 (C12A7), which can accommodate anions in its cavities. An increase in oxygen pressure and a decrease in water vapor pressure at high temperature enhance the formation of the radicals. The oxidation of Pt is observed on the surface of the material as a result of reaction with the active oxygens.  相似文献   

18.
19.
The mechanism of heterogeneous ice nucleation on inorganic substrates is not well understood despite work on AgI and other materials over the past 50 years. We have selected BaF(2) as a model substrate for study since its (111) surface makes a near perfect match with the lattice of the basal face of I(h) ice and would appear to be an ideal nucleating agent. Two series of experiments were undertaken. In one, nucleation of thin film water formed from deposition of vapor on BaF(2)(111) faces was explored with the finding that supercooling to -30 degrees C was required before freezing occurred. In the other series, nucleation of liquid water on submerged BaF(2) crystals was studied. Here supercooling to -15 degrees C was needed before ice formed. The reason why BaF(2) is such a poor nucleating agent contains clues to realistic mechanisms of heterogeneous nucleation. Our explanation of these results follows the model of Fletcher [J. Chem. Phys. 29, 572 (1958)] who showed that heterogeneous ice nucleating ability depends on how well ice wets a substrate. In this view, a smooth BaF(2)(111) face is poor at nucleation because ice only partially wets its surface. In an extension of Fletcher's model, our calculations, consistent with the experimental results demonstrate that the pitting of a submerged BaF(2) crystal dramatically improves its ice nucleating ability.  相似文献   

20.
We apply periodic density functional theory to alpha-MoO3 and its (010) surface. The formation energy and structure of defects in the form of surface oxygen vacancies are found to depend critically on the treatment of electron localisation which is achieved in the periodic model using the DFT + U method. Calculated vibrational states for the defect free surface are found to agree well with surface science experimental data and we show that the molybdenyl stretching mode is shifted to a lower frequency in the neighbourhood of a terminal oxygen vacancy. Adsorption of molecular oxygen at the defect site can result in O2, O2(-) or O2(2-) surface species depending on the geometry of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号