首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Abstract

Neptunium and plutonium monopnictides and monochalcogenides were studied by x-ray diffraction at pressures up to 57 GPa. All of them exhibit structural phase transitions under pressure. The arsenides and tellurides have a CsCl (B2) type high-pressure structure. Sb as an anion favours a tetragonal high-pressure structure. The compressibilities were determined for all of the compounds studied. The results are compared to those obtained for the corresponding thorium and uranium compounds.  相似文献   

2.
Transition metal dichalcogenides, because of their layered structure, are well suited for extreme pressure lubrication. These materials being semiconducting and of layered structure may undergo structural and electronic transitions under pressure. Here we report the details of the preparation and characterization of single crystals of NbTe2 and the results of electrical resistance measurements under pressure carried out on it to investigate this possibility. Single crystals were grown by the chemical vapor transport technique, using iodine as a transporting agent. The composition of the grown crystals was confirmed on the basis of Energy Dispersive Analysis by X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray Diffraction (XRD) studies. Electrical resistance was measured employing a Bridgman anvil set up to 10?GPa and diamond anvil cell (DAC) assembly up to 25?GPa. A technique slightly modified from that described in the literature for carrying out electrical resistivity measurements in the diamond anvil cell (DAC) under pressure has been standardized.  相似文献   

3.
张倩  巫翔  秦善 《中国物理 B》2011,20(6):66101-066101
In situ high-pressure experiments of Co2P are carried out by means of angle dispersive X-ray diffraction with diamond anvil cell technique. No phase transition is observed in the present pressure range up to 15 GPa at room temperature, even at high temperature and 15 GPa. Results of compression for Co2P are well presented by the second-order Birch-Murnaghan equation of state with V0 = 130.99(2)3 (1=0.1 nm) and K0 = 160(3) GPa. Axial compressibilities are described by compressional modulus of the axis: Ka = 123(2) GPa, Kb = 167(8) GPa and Kc = 220(7) GPa. Theoretical calculations further support the experimental results and indicate that C23-type Co2P is stable at high pressure compared with the C22-type phase.  相似文献   

4.
Intercalation of cis-but-2-enedioate anion or trans-but-2-enedioate anion into the layered double hydroxide (LDH), [Mg0.66Al0.34(OH)2]Cl0.34·0.43H2O was carried out by the method of ion-exchange procedures. Selective reaction was observed in competitive experiments involving an equal concentration pairs of acids. The trans-but-2-enedioate anion is preferentially intercalated into the Mg-Al-LDH. The obtained intercalation compounds were characterized by X-ray diffraction, infrared and thermogravimetry techniques. The charge density on the oxygens of each of the carboxylate groups for both anions was investigated utilizing ab initio (HF/6-31G) method by G98w. From the X-ray diffraction data, the guest size and the charge density of the oxygen of the guest, the orientation of both anions between the layers was determined and the preferential intercalation mechanism was studied. These results indicate the possibility of a molecular recognition ability of LDHs.  相似文献   

5.
The quasi-isentropic compressibilities of deuterium and helium plasmas are measured in the pressure range 1500–5000 GPa at densities up to 8 g/cm3 using spherical experimental devices and an X-ray complex consisting of three betatrons and a multichannel optoelectronic system for taking X-ray images. The experimental results demonstrate the possibilities of high-energy-density experimental physics to reproduce the extreme states of substance typical of the Universe under laboratory conditions using the energy of traditional condensed explosives.  相似文献   

6.
Ramesh Narayan 《Pramana》1979,13(5):559-570
Ionic radii and compressibilities have been calculated for a number of monovalent and divalent ions and radicals on the basis of the compressible ion theory. In this theory, the compression energy of an ion is given as a two-parameter function of its radius,A exp (−r/p), the radius and compressibility of the ion being monotonically decreasing functions of the compressing force acting on it. Choosing a standard force reflecting the average environment in the alkali halides, univalent radii and compressibilities have been calculated. This is the first theory to estimate ionic compressibilities. The values show systematic trends among groups of related ions. Anions are found to be significantly more compressible than cations (e.g., the compressibilities of Ca++, K+, Cl and S− − are respectively 0.8530, 1.342, 2.952 and 5.150 × 10−12 cm2/ dyne). Multivalent or ‘crystal’ radii and compressibilities have also been calculated by scaling the standard force by the square of the ionic charge. The calculated ionic radii are closer to experimental values than the classical empirical radii.  相似文献   

7.
The linear compressibility of two-dimensional fatty acid mesophases has been determined by grazing incidence X-ray diffraction. The unit cell parameters of the , , , S and phases of behenic acid and of the phase of myristic acid were determined as a function of surface pressure and temperature. Surface pressure versus molecular area isotherms were reconstructed from these measurements, and the linear compressibility (relative distortion along a given direction for a two-dimensional isotropic applied stress) was determined both in the sample plane and in a plane normal to the aliphatic chain director (transverse plane). The linear compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are distributed depending on their magnitude in 4 different sets which we are able to associate with different molecular mechanisms. The largest compressibilities (10 m/N) are observed in the tilted phases. They are apparently independent on the chain length and could be related to the reorganization of the headgroup hydrogen-bounded network, whose role should be revalued. Intermediate compressibilities are observed in phases with quasi long-range order (directions normal to the molecular tilt in the or phases, S phase, and could be related to the ordering of these phases. The lowest compressibilities are observed in the solid untilted phase and for one direction of the S and phases. They are similar to the compressibility of crystalline polymers and correspond to the interactions between methyl groups in the crystal. Finally, negative compressibilities are observed in the transverse plane for the and phases and can be traced to subtle reorganizations upon untilting. Received: 29 July 1997 / Revised: 14 October 1997 / Accepted: 23 October 1997  相似文献   

8.
An ab initio study of the Nan(OH)n, Nan(OH)n-1 +, Agn(OH)n, and Agn(OH)n-1 + clusters with n up to four is presented. The results of this study show that, in accordance with experimental observations, the sodium hydroxide clusters are almost purely ionic, while the Ag-O bond exhibits a significant covalent character. The perturbation caused by the non-spherical OH- group relatively to an atomic anion, as well as the influence on structures and energies of the covalent character of the metal-oxygen bond are determined. The appearance of metal-metal bonds in the silver hydroxide clusters is also discussed. Finally, the theoretical results obtained on the Na-OH clusters are compared to experimental results available on the dissociation of the Nan(OH)n-1 + clusters. Received 9 August 1999 and Received in final form 1st December 1999  相似文献   

9.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

10.
The impacts of pressure on the structural and electronic properties of CeIn3 have been calculated. The calculations are performed in the presence and the absence of spin-orbit interaction as well as GGA+U using density functional theory within the PBE-GGA approximation. It is shown that energy and density of states analyses are considerably influenced by the spin-orbit interaction. The spin and orbital magnetic moments of Ce are calculated under pressure up to 22 GPa. An almost linear relation is observed between the magnetic moment and the density of states of Ce-4f at Fermi level. At ambient pressure, a good agreement between the values of the electric field gradients, EFG, and bulk modulus with experimental results is observed. The strongest anisotropy in charge distribution originates from In-5p orbital, which has the main contribution to EFG.  相似文献   

11.
12.
The sound velocities for longitudinal and transverse waves have been measured in single crystalline BaFCl at room temperature using ultrasonic pulse echo and Brillouin scattering techniques. The complete set of elastic constants is deduced and lead to the bulk moduli values of BaFCl at ambiant conditions (, , ) which are compared with those obtained by a shell model. Moreover, using the ultrasonic technique under pressure, the pressure derivatives of the second order elastic constants at 298 K have been determined up to 0.3 GPa. All moduli increase linearly with pressure in this pressure range, allowing to determine directly and separately the first derivative of the bulk modulus B'0 = 5.8. These data are used to calculate a Murnaghan equation of state. A detailed comparison is given between our results with those recently obtained by X-ray diffraction on powder or calculated using the local density approximation method. Finally, the anisotropy of BaFCl under pressure is discussed. Received: 19 March 1998 / Revised: 15 May 1998 / Accepted: 19 May 1998  相似文献   

13.
We present a room temperature high-pressure X-ray diffraction study of the layered compound 1T-TaS2 up to 20 GPa. This material is known to exhibit a variety of structural phase transitions that are ascribed to the stabilization of charge density wave states. It has been recently shown that at pressures larger than 3 GPa and up to 25 GPa, 1T-TaS2 becomes superconductor below about 5 K. It was suggested that this superconductivity coexists with different CDW states, an hypothesis that can be tested by X-ray diffraction. Our first results at room temperature show that at around 1.9 GPa, the nearly-commensurate (NCCDW) phase transforms into a phase similar to the high temperature incommensurate phase (ICCDW). Above 9 GPa, we show the existence of another IC phase, still discernable up to 20 GPa despite the pressure-induced crystal damage above 13 GPa. These results are consistent with resistivity measurements, but call for a complete exploration of the PT phase diagram of 1T-TaS2.  相似文献   

14.
The high-pressure structures of an underdoped cuprate superconductor Bi2Sr2CaCu2O8+δ have been studied by synchrotron X-ray diffraction at pressures up to 36.5 GPa. We find that this superconductor retains its orthogonal structure with the space group Amaa in the pressure range studied. Upon compression, both the a and b axes first shrink monotonically up to 17.4 GPa from their ambient pressure values and keep these behaviors with positive compressibilities up to 36.5 GPa after experiencing expansion with negative compressibilities in the pressure regime between 17.4 and 23.7 GPa. However, the c axis decreases continuously with increasing pressure with a slow change at about 23.7 GPa. The results indicate an isostructural phase transition starting at 17.4 GPa and a structural collapse at around 23.7 GPa.  相似文献   

15.
The compression behavior of delafossite-type metallic oxide PdCoO2 below 10 GPa has been investigated by in situ high pressure X-ray diffraction measurement using synchrotron radiation. It is found that the delafossite-type structure of PdCoO2 is stable below 10 GPa. It should be noted that compression behavior of PdCoO2 is anisotropic. Pressure dependence of the lattice parameters indicates that the a-axis is more compressible than the c-axis. The lattice parameter ratio c/a in the hexagonal unit increases with increasing pressure. The calculated zero-pressure bulk modulus is 224 GPa. It is found that the above characteristic compression behaviors of PdCoO2 are the same as those of the delafossite CuFeO2. The compressibilities of the a-axis of both PdCoO2 and CuFeO2 are highly different although those of the c-axis are almost the same.  相似文献   

16.
Up to now a Ni2In structure is a final step in the structural sequence of ionic AX2 compounds under high pressure. Powder X-ray diffraction experiments on BaH2 were performed at room temperature and high pressures up to 69 GPa. Successive phase transformations were observed to occur in two stages. The first was from the cotunnite to the Ni2In structure at 2.5 GPa. The second transition commenced at pressures around 50 GPa and was completed at 65 GPa. At the transition the arrangement of a cation sublattice changes from an hcp to a simple hexagonal lattice. This is the first observation of the post Ni2In phase.  相似文献   

17.
A. Bouhemadou 《哲学杂志》2013,93(12):1623-1638
The structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf) were studied by means of a pseudo-potential plane-wave method based on the density functional theory within both the local density approximation and the generalised gradient approximation. The optimised zero-pressure geometrical parameters, i.e. the two unit cell lengths (a, c) and the internal coordinate (z), were in good agreement with available experimental and theoretical data. The effect of high pressure, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than along c-axis. The anisotropic independent elastic constants were calculated using the static finite strain technique. Numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature for ideal polycrystalline M2SbP aggregates were performed in the framework of the Voigt–Reuss–Hill approximation. The calculated band structures show that all studied materials are electrical conductors. Analysis of the atomic site projected densities showed that the bonding is of covalent–ionic nature with the presence of metallic character. The density of states at the Fermi level is dictated by the transition metal d–d bands; the Sb element has little effect. Thermal effects on some macroscopic properties of M2SbP were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the volume expansion coefficient, heat capacity and Debye temperature with pressure and temperature in the ranges 0–50 GPa and 0–2000 K were obtained successfully.  相似文献   

18.
 用四点电极法及磁控溅射结合光刻集成电极的方法,测量了铁在25 GPa压力下的电阻随压力的变化;用微区X射线衍射仪原位测量了铁在25 GPa压力下晶胞参数随压力的变化关系。实验结果表明,铁在13.7 GPa时发生相变,由体心立方相转变为六方密堆相,在18.1 GPa时相变结束。利用高压下铁的电阻数据,结合X射线衍射结果,推导出铁的电导率随压力的变化关系。  相似文献   

19.
To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young’s modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.  相似文献   

20.
 采用惰性气体蒸发和真空原位加压方法,制备了具有清洁界面的平均粒度为14 nm的纳米固体CaF2,并在0.1 MPa~2.2 GPa压力范围内52个不同的静水压下,分别详细测量出其离子电导率σ和相对介电常数随压力变化的规律。讨论指出:(1)离子迁移通道受压后的变化(大于、等于或小于最佳值),是影响离子电导率-压力曲线峰值的主要因素;(2)当压力从0.66 GPa再增加时,lg σ分三段线性下降,可归因于纳米晶体的三种自由体积;(3)界面层空间电荷极化是造成纳米CaF2相对介电常数较大的原因,由此可理解介电常数的压力效应,了提高产品的氟离子电导率,用真空原位加压法制备纳米材料时,应当采用高于0.66 GPa的压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号