首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the size, structure and magnetic properties of Ni nanoparticles fabricated with a free-jet sputtering nanoparticle source. It is found how the pressure of the inert gas and the diameter of the source nozzle can control the particle size and coercivity in a wide range. Measurements of the specific magnetic moment of Ni nanoparticles are reported. A particular growing regime is found at high pressures over 1.8 mbar observing a further aggregation process that leads to nanoparticle agglomerates with diameters larger than 100 nm with a low dispersion in size.  相似文献   

2.
Magnetic FeCo nanoparticles were successfully synthesized in a diffusion cloud chamber setup within pulsed laser deposition (PLD) equipment. The variation of morphology and size of FeCo nanoparticles with the number of laser pulses, ambient gas pressure and temperature gradient was studied. It was observed that the morphology of the nanoparticles changes from “cloud-like” fractal clusters to particle chains; average particle size increased at higher argon gas pressure. Increasing the temperature gradient considerably reduced the agglomeration of the nanoparticles. Nanoparticles deposited using the diffusion cloud chamber are found to be crystalline.  相似文献   

3.
The filtration efficiency for nanoparticles down to 1 nm in size through glass fibrous filters was measured using an improved PSM-CNC system. In addition, the effects of relative humidity and particle charge were investigated for various nanoparticle diameters. The results show that the filtration efficiencies were independent of humidity and affected by particle charge in the case of particles below 100 nm in size. For particles smaller than 2 nm, the particle penetrations increased with decreasing particle size. These results suggest that the thermal rebound phenomena would be operative for nanoparticles with diameters below 2 nm, even though it would depend on the states of both the particles and the filter media. These results are particularly important for experimental investigations of the behavior of nanoparticles on a filter.  相似文献   

4.
The synthesis of silicon nanowires that are densely coated with silicon nanoparticles is reported. These structures were produced in a two-step process, using a method known as hypersonic plasma particle deposition. In the first step, a Ti–Si nanoparticle film was deposited. In the second step the Ti-source was switched off, and nanoparticle-coated nanowires grew under the simultaneous action of Si vapor deposition and bombardment by Si nanoparticles. Total process time, including both steps, equaled 5 min, and resulted in formation of a dense network of randomly oriented nanowires covering1.5 cm2 of substrate area. The nanowires are composed of single-crystal Si. The diameters of the nanowires vary over the range 100–800 nm. Each nanowire has a crystalline TiSi2 catalyst particle, believed to have been solid during nanowire growth, at its tip.  相似文献   

5.
Generation, collection, and characterization of gold, silver, and palladium nanoparticles and nano-agglomerates (collectively “nanoparticles”) have been explored. The nanoparticles were generated with a spark aerosol generator (Palas GFG-1000). They were collected using a deposition cell under diffusion and thermophoresis. The shapes and sizes of the deposited particles were measured using transmission electron microscopy (TEM). TEM images showed that the particles were in the range of 8–100 nm in diameter, and their shapes varied from nearly spherical to highly non-spherical. Thermophoresis enhanced the deposition of nanoparticles (over the diffusive or the isothermal deposition) in all cases. Further, the size distributions of the nanoparticles generated in the gas phase (aerosol) were measured using a scanning mobility particle sizer (SMPS 3080, TSI) spectrometer. The SMPS results show that an increase in the spark frequency of the generator shifted the size distributions of the nanoparticles to larger diameters, and the total particle mass production rate increased linearly with increase in the spark frequency. The computational fluid dynamics code Fluent (Ansys) was used to model the flow in the deposition cell, and the computed results conform to the observations.  相似文献   

6.
The influence of the size of nanoparticles on their catalytic activity was investigated for two systems on unsupported, i.e. gasborne nanoparticles. For the oxidation of hydrogen on Pt nanoparticle agglomerates, transport processes had to be taken into account to extract the real nanoparticle size effects. The results indicate an optimum particle size for the catalytic activity below 5nm which points clearly toward a real volume effect. In the case of the methanation reaction on gasborne Ni nanoparticles, no transport limitations were observed and the product concentration was directly proportional to the activity of the primary particles. We found an activity maximum for particles of about 19nm in diameter. This size is too large to be attributed to a real nanoparticle size effect induced by the electronic band structure. Therefore, we concluded that the particle size influences the adsorption behavior of the carbon monoxide molecules. In fact, it is known that intermediate adsorption enthalpies may favor dissociation processes, which is an essential step for the reaction, as manifested in the so called volcano-shaped curve. Then, in addition to the material dependence of the adsorption, we would also encounter a direct size dependence in the case of methanation on gasborne Ni nanoparticles.  相似文献   

7.
杨秀清  胡亦  张景路  王艳秋  裴春梅  刘飞 《物理学报》2014,63(4):48102-048102
利用化学气相沉积法,采用不同组分的金属合金纳米粒子AuPd作为催化剂,在Si(111)基底上成功制备大面积、高密度的硼纳米线薄膜.纳米线的平均长度约为10μm,直径在50—130 nm之间.结构分析表明,纳米线为单晶结构,硼纳米线的直径随着元素Pd在合金催化剂中比例的增加而减少.场发射特性测试结果表明,通过调整催化剂组分可以实现对硼纳米线的尺寸和密度的调控.  相似文献   

8.
《Current Applied Physics》2018,18(12):1553-1557
Gallium nitride (GaN) nanoparticles are synthesized by the gallium particle trapping effect in a N2 nonthermal plasma with metallic Ga vapor. A proposed method has an advantage of synthesized GaN nanoparticle purity because the gallium vapor from the inductively heated tungsten boat does not contain any impurity source. The synthesized particle size can be controlled by the amount of Ga vapor, which is adjusted using the plasma emission ratio of nitrogen to gallium, owing to the particle trapping effect. The synthesized nanoparticles are investigated by electron microscopy studies. High-resolution transmission electron microscopy (HRTEM) studies confirm that the synthesized GaN nanoparticles (10–40 nm) crystallize in a single-phase wurtzite structure. Room-temperature photoluminescence (PL) measurements indicate the band-edge emission of GaN at around 378 nm without yellow emission, which implies that the synthesized GaN nanoparticles have high crystallinity.  相似文献   

9.
Melting evolution and diffusion behavior of vanadium nanoparticles   总被引:2,自引:0,他引:2  
Molecular dynamics calculations have been performed to study the melting evolution, atomic diffusion and vibrational behavior of bcc metal vanadium nanoparticles with the number of atoms ranging from 537 to 28475 (diameters around 2–9 nm). The interactions between atoms are described using an analytic embedded-atom method. The obtained results reveal that the melting temperatures of nanoparticles are inversely proportional to the reciprocal of the nanoparticle size, and are in good agreement with the predictions of the thermodynamic liquid-drop model. The melting process can be described as occurring in two stages, firstly the stepwise premelting of the surface layer with a thickness of 2–3 times the perfect lattice constant, and then the abrupt overall melting of the whole cluster. The heats of fusion of nanoparticles are also inversely proportional to the reciprocal of the nanoparticle size. The diffusion is mainly localized to the surface layer at low temperatures and increases with the reduction of nanoparticle size, with the temperature being held constant. The radial mean square vibration amplitude (RMSVA) is developed to study the anharmonic effect on surface shells.  相似文献   

10.
Gold nanoparticles have applications ranging from catalysts for low temperature oxidation of CO to solar energy capture in the infrared. For all these applications, particle size and shape are critical. In this study, nanoparticle gold formed on GaN nanowires by plasma-enhanced chemical vapor deposition was annealed at temperatures ranging from 150 to 270 °C for 24 h. Particle size was measured before and after annealing using a field emission scanning electron microscope. Ripening of the gold particles was observed even at the lowest annealing temperatures of the study. The particle growth kinetics showed an Arrhenius relationship with activation energy of 27.38 kJ/mol. This value suggests that ripening occurs by particle migration and coalescence rather than adatom diffusion.  相似文献   

11.
Photoinduced chemical vapor deposition was used to grow organic coatings on NaCl nanoparticles. Aerosolized nanoparticles were mixed with a vapor-phase coating reactant and introduced into a room-temperature, atmospheric-pressure cell, where the mixture was exposed to 172-nm radiation from a Xe2* excimer lamp. Several coating reactants were investigated; the most successful was methyl methacrylate (MMA). Tandem differential mobility analysis (TDMA) was used to determine coating thicknesses as a function of initial particle size. For NaCl particles ranging from 20 to 60 nm in mobility diameter, the thicknesses ranged from sub-nm to 20 nm depending on MMA flow rate and initial particle size.  相似文献   

12.
A new chemical vapor deposition (CVD) method, called ionization CVD, was developed, to produce non-agglomerated nanoparticles in which reactant gases are charged. A sonic-jet corona discharger was used as an ionizer in the developed nanoparticle generator. For a tetraethylorthosilicate (TEOS)/O2 chemical system, SiO2 nanoparticles were prepared. All particles formed by the ionization CVD were charged unipolarly. SEM micrographs of particles showed that the repulsive Coulombic force between charged particles reduces their coagulation rate and produces non-agglomerated nanoparticles that have a relatively high number concentration and small size. An external field was used to collect the charged particles onto Si wafers. These collected samples indicated that the deposition of charged particles could be controlled by the external electric field. Particle concentration measurement with a condensation nucleus counter at various TEOS concentrations suggested the particle formation mechanism in the ionization CVD was an ion-induced nucleation.  相似文献   

13.
Size of nanoparticles is an important parameter for their applications. The real-time monitoring is required for reliable and reproducible production of nanoparticles with controllable size. We present results of our research on development of the system for the online nanoparticle characterization during their production by a laser. The laser ablation chamber which allows measurements of surface plasmon resonance spectra during the nanoparticle generation process has been designed and fabricated. The online characterization system was tested by producing and modification of gold nanoparticles. Nanoparticles were generated by nanosecond-laser (wavelength 1064 nm) ablation of gold target in deionized water, and optimal conditions for the highest nanoparticle productivity were estimated. The mean diameter of nanoparticles was determined using their absorption spectra measured in the real-time during the ablation experiments and from the TEM images analysis, and it varied from 20 to 45 nm. The mismatch between nanoparticle diameters, estimated using these two methods, is due to the polydispersity of the generated nanoparticles. The further experiments of laser-induced modification of colloidal gold nanoparticles were carried out using second harmonic (wavelength 532 nm) of nanosecond Nd:YAG laser and alteration in nanoparticle size were acquired by the online measurement system.  相似文献   

14.
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.  相似文献   

15.
用微米级LaNi5合金粉末为催化剂, 以乙炔为原料, 采用化学气相沉积(CVD)法合成了多壁碳纳米管. 在100~290 K温度下测量了41 μm≤d≤150 μm粒径催化剂制备的不同直径分布的碳纳米管的电子自旋共振(ESR)谱,研究了测量温度、微米级催化剂粒径及制备过程的氢气氛对生成的碳纳米管的ESR谱线型、g因子、线宽的影响. 发现碳纳米管的g因子随其直径的增大而增大,分别为2.040 0(催化剂粒径41 μm≤d≤50 μm, 碳纳米管的直径分布为10 nm到20 nm)和2.089 8(催化剂粒径100 μm≤d≤150 μm,碳纳米管的直径分布为70 nm到120 nm). 发现小管径纳米管的ESR谱图有一个峰, 而大管径纳米管的ESR谱图有两个峰A和B, 且随测量温度的升高, 峰B强度增大.  相似文献   

16.
We report a facile method for controllable fabrication of high-density silver nanoparticle films with a widely adjustable surface plasmon resonance (SPR) frequency, based on the gas phase cluster beam deposition. On the one hand, we can control the particle size by depositing clusters on silica substrate. Light extinction spectra of the self-assembled Ag nanoparticles with various particle sizes are characterized and show two SPRs, in which a SPR exhibits a redshift from less 400 nm to more than 570 nm with an increase in the particle size, whereas the other shows a slight position shifting. On the other hand, the inter-particle distance of the self-assembled Ag nanoparticles can also be controlled by depositing clusters on silica glass coated with Formvar film, and the SPR wavelength shows a redshift from <400 nm to more than 560 nm, which can be attributed to the increase of the fraction of closely spaced nanoparticle pairs that are near-field coupled with the deposition mass. The size and coverage-dependent SPR properties are also compared with the results from the discrete dipole approximation calculations. The present method of tailoring metallic microstructures could find important applications in plasmonics.  相似文献   

17.
In this study, nanoparticle penetration was measured with a wide range of filter media using silver nanoparticles from 3 nm to 20 nm at three different face velocities in order to define nanoparticle filtration characteristics of commercial fibrous filter media. The silver particles were generated by heating a pure silver powder source via an electric furnace with a temperature of 870°C, which was found to be the optimal temperature for generating an adequate amount of silver nanoparticles for the size range specified above. After size classification using a nano-DMA, the particle counts were measured by an Ultrafine Condensation Particle Counter (UCPC) both upstream and downstream of the test filter to determine the nanoparticle penetration for each specific particle size. Particle sampling time continued long enough to detect more than 105 counts at the upstream and 10 counts at the downstream sampling point so that 99.99% efficiency can be detected with the high efficiency filter. The results show a very high uniformity with small error bars for all filter media tested in this study. The particle penetration decreases continuously down to 3 nm as expected from the classical filtration theory, and together with a companion modeling paper by␣Wang et al. in this same issue, we found no significant evidence of nanoparticle thermal rebound down to 3 nm.  相似文献   

18.
Microstructural and magnetic properties of passivated Co nanoparticle films   总被引:2,自引:0,他引:2  
Co nanoparticle films were prepared by plasma–gas-condensation-type particle beam deposition system. High-resolution transmission electron microscopy images show that the Co nanoparticles have a very narrow size distribution with an average diameter of 20 nm, and each of the Co nanoparticles is covered with an 3 nm layer of CoO. Hysteresis loops of the films after field-cooling in a 5 T magnetic field are greatly shifted, which can be attributed to the exchange bias effect caused by the interfacial exchange coupling between the CoO shell and the Co core. The zero field cooled films show several prominent properties, such as a quite large coercive field, a small remanence and their abnormal dependences on temperature. All these observations can be attributed to the existence of an exchange bias effect within each single Co nanoparticle even without a field-cooling process.  相似文献   

19.
Electrophoretic deposition (EPD) has been used to combine multi-walled carbon nanotubes of diameter in the range 20–30 nm and commercially available TiO2 nanoparticles (23 nm particle size) in composite films. Laminate coatings with up to four layers were produced by sequential EPD, while composite coatings were obtained by electrophoretic co-deposition of carbon nanotubes and TiO2 nanoparticles, respectively. Scanning electron microscopy was used to characterize the resultant microstructures. The mechanism of EPD of carbon nanotube/TiO2 nanoparticle composites is discussed.  相似文献   

20.
Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2–5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号