首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the solvation of polar molecules in water. The center of water's dipole moment is offset from its steric center. In common water models, the Lennard-Jones center is closer to the negatively charged oxygen than to the positively charged hydrogens. This asymmetry of water's charge sites leads to different hydration free energies of positive versus negative ions of the same size. Here, we explore these hydration effects for some hypothetical neutral solutes, and two real solutes, with molecular dynamics simulations using several different water models. We find that, like ions, polar solutes are solvated differently in water depending on the sign of the partial charges. Solutes having a large negative charge balancing diffuse positive charges are preferentially solvated relative to those having a large positive charge balancing diffuse negative charges. Asymmetries in hydration free energies can be as large as 10 kcal/mol for neutral benzene-sized solutes. These asymmetries are mainly enthalpic, arising primarily from the first solvation shell water structure. Such effects are not readily captured by implicit solvent models, which respond symmetrically with respect to charge.  相似文献   

2.
A first-generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic hardnesses, and electronegativities, are parameterized by fitting to DFT-based charge responses of small molecules perturbed by a dipolar probe mimicking a water dipole. The nonbonded parameters for atoms based on the CHARMM atom-typing scheme are determined via simultaneously optimizing vacuum water-solute geometries and energies (for a set of small organic molecules) and condensed phase properties (densities and vaporization enthalpies) for pure bulk liquids. Vacuum solute-water geometries, specifically hydrogen bond distances, are fit to 0.19 A r.m.s. error, while dimerization energies are fit to 0.98 kcal/mol r.m.s. error. Properties of the liquids studied include bulk liquid structure and polarization. The FQ model does indeed show a condensed phase effect in the shifting of molecular dipole moments to higher values relative to the gas phase. The FQ liquids also appear to be more strongly associated, in the case of hydrogen bonding liquids, due to the enhanced dipolar interactions as evidenced by shifts toward lower energies in pair energy distributions. We present results from a short simulation of NMA in bulk TIP4P-FQ water as a step towards simulating solvated peptide/protein systems. As expected, there is a nontrivial dipole moment enhancement of the NMA (although the quantitative accuracy is difficult to assess). Furthermore, the distribution of dipole moments of water molecules in the vicinity of the solutes is shifted towards larger values by 0.1-0.2 Debye in keeping with previously reported work.  相似文献   

3.
4.
The structural nature of the solvation shells of an iodate ion, which is known to be a polyoxy‐anion with a large cationic centre, is investigated by means of Born–Oppenheimer molecular dynamics (BOMD) simulations using BLYP and the dispersion corrected BLYP‐D3 functionals. The iodate ion is found to have two distinct solvation regions around the positively charged iodine (iodine solvation shell or ISS) and the negatively charged oxygens (oxygen solvation shell or OSS). We have looked at the spatial, orientational, and hydrogen bond distributions of water in the two solvation regions. It is found that the water orientational profile in the ISS is typical of a cation hydration shell. The hydrogen bonded structure of water in the OSS is found to be very similar to that of the bulk water structure. Thus, the iodate ion essentially behaves like a positively charged iodine ion in water as if there is no anionic part. This explains why the cationic character of the iodate ion was prominently seen in earlier studies. The arrangement of water molecules in the two solvation shells and in the intervening regions around the iodate ion is further resolved by looking at structural cross‐correlations. The electronic properties of the solvation shells are also looked at by calculating the solute–solvent orbital overlap and dipole moments of the solute and solvation shell water. We have also performed BOMD simulations of iodate ion‐water clusters at experimentally relevant conditions. The simulation results are found to be in agreement with experimental results. © 2018 Wiley Periodicals, Inc.  相似文献   

5.
Mean spherical approximation (MSA) for electrolyte solution has been extended to investigate the role of partial solvent polarization densities around an ion in a completely asymmetric binary dipolar mixture. The differences in solvent diameters, dipole moments, and ionic size are incorporated systematically within the MSA framework in the present theory for the first time. In addition to the contributions due to difference in dipole moments, the solvent-solvent and ion-solvent size ratios are found to significantly affect the nonideality in binary dipolar mixtures. Subsequently, the theory is used to investigate the role of ion-solvent and solvent-solvent size ratios in determining the nonideality in Born free energy of solvation of a unipositive rigid ion in alcohol-water and dimethyl sulfoxide-acetonitrile mixtures, where the solvent components are represented only by their molecular diameters and dipole moments. Nonideality in Born free energy of solvation in such simplified mixtures is found to be stronger for smaller ions. The slope of the nonideality for smaller alkali metal ions in methanol-water mixture is found to be opposite to that for larger ion, such as quaternary tertiary butyl ammonium ion. For ethanol-water mixtures, the slopes are in the same direction for all the ions studied here. These results are in qualitative agreement with experiments, which is surprising as the present MSA approach does not include the hydrogen bonding and hydrophobic interactions present in the real mixtures. The calculated partial polarization densities around a unipositive ion also show the characteristic deviation from ideality and reveal the microscopic origin of the ion and solvent size dependent preferential solvation. Also, the excess free energy of mixing (in the absence of any ion) for these binary mixtures has been calculated and a good agreement between theory and experiment has been found.  相似文献   

6.
The formation of structured hydrogen bond networks in the solvation shells immediate to hydrophobic solutes is crucial for a large number of water mediated processes. A long lasting debate in this context regards the mutual influence of the hydrophobic solute into the bulk water and the role of the hydrogen bond network of the bulk in supporting the solvation structure around a hydrophobic molecule. In this context we present a molecular dynamics study of the solvation of various hydrophobic molecules where the effect of different regions around the solvent can be analyzed by employing an adaptive resolution method, which can systematically separate local and nonlocal factors in the structure of water around a hydrophobic molecule. A number of hydrophobic solutes of different sizes and two different model potential interactions between the water and the solute are investigated.  相似文献   

7.
8.
We report herein a combined experimental–computational study on tris‐(2‐hydroxylethyl)methylammonium methylsulfate in water solutions, as a representative ionic liquid of the aqueous‐solution behavior of hydroxylammonium‐based ionic liquids. Relevant thermophysical properties were measured as a function of mixture composition and temperature. Classical molecular dynamics simulations were performed to infer microscopic structural features. The reported results for ionic liquid in water‐rich solutions show that it behaves as isolated non‐interacting ions solvated by water molecules, through well‐defined solvation shells, exerting a disrupting effect on the water hydrogen bonding network. Nevertheless, as ionic liquid concentration increase, interionic association increases, even for diluted water solutions, evolving from the typical behavior of strong electrolytes in solution toward large interacting structures. For ionic‐liquid‐rich mixtures, water exerts a minor disrupting effect on the fluid’s structuring because it occupies regions around each ion (developing water–ion hydrogen bonds) but without significantly weakening anion–cation interactions.  相似文献   

9.
We have performed a series of molecular dynamics simulations of water-acetone mixtures containing either an ionic solute or a neutral hydrophobic solute to study the extent of nonideality in the dynamics of these solutes with variation of composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to change nonmonotonically with the composition of the mixtures showing strong nonideality of their dynamics. Also, the extent of nonideality in the diffusion of these charged solutes is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and acetone molecules in these mixtures which show a somewhat similar changes in the solvation characteristics of charged and dipolar solutes with changes of composition of water-acetone mixtures. The diffusion of the hydrophobic solute, however, shows a monotonic increase with increase of acetone concentration showing its different solvation characteristics as compared to the charged and dipolar solutes. The links between the nonideality in diffusion and solvation structures are further confirmed through calculations of the relevant solute-solvent and solvent-solvent radial distribution functions for both ionic and hydrophobic solutes. We have also calculated various pair dynamical properties such as the relaxation of water-water and acetone-water hydrogen bonds and residence dynamics of water molecules in water and acetone hydration shells. The lifetimes of both water-water and acetone-water hydrogen bonds and also the residence times of water molecules are found to increase steadily with increase in acetone concentration. No maximum or minimum was found in the composition dependence of these pair dynamical quantities. The lifetimes of water-water hydrogen bonds are always found to be longer than that of acetone-water hydrogen bonds in these mixtures. The residence times of water molecules are also found to follow a similar trend.  相似文献   

10.
Solvation in supercritical water under equilibrium and nonequilibrium conditions is studied via molecular dynamics simulations. The influence of solute charge distributions and solvent density on the solvation structures and dynamics is examined with a diatomic probe solute molecule. It is found that the solvation structure varies dramatically with the solute dipole moment, especially in low-density water, in accord with many previous studies on ion solvation. This electrostrictive effect has important consequences for solvation dynamics. In the case of a nonequilibrium solvent relaxation, if there are sufficiently many water molecules close to the solute at the outset of the relaxation, the solvent response measured as a dynamic Stokes shift is almost completely governed by inertial rotations of these water molecules. By contrast, in the opposite case of a low local solvent density near the solute, not only rotations but also translations of water molecules play an important role in solvent relaxation dynamics. The applicability of a linear response is found to be significantly restricted at low water densities.  相似文献   

11.
J. Dietter  H. Morgner 《Chemical physics》1997,220(3):17115-278
A molecular dynamics simulation of a liquid layer of a concentrated CsF solution in water has been performed in order to compare the results with those obtained in an experimental study of our group. The main result of the experiment was the existence of a monolayer of nearly pure water constituting the surface and a homogeneous mixture constituting the bulk of the system. The simulation reveals the same phenomena which can be explained by the circumstance that the ions near the surface mostly keep their first solvation shell intact. The water molecules belonging to these shells and being placed on the vapor side constitute this monolayer. The density profiles of the ions indicate that the Cs ions penetrate further into the surface than the F ions. The orientational structure of the first shell of water molecules around an ion is the same for ions in the surface and ions in the bulk in contrast to the dynamics which is altered. The spectra of the librational motion are shifted to lower frequencies. In addition to that the spectra belonging to libration which involves motion of the dipole moment develop a peak in the low frequency range irrespective of whether the water molecules are bonded to Cs or to F ions. This can be correlated with an overall preferred orientation of the water molecules in the surface which is most pronounced for the dipole moment. The calculation of the diffusion coefficients shows that the top surface layer of nearly pure water is a region of enhanced and extremely anisotropic mobility. The mean residence time of water molecules in the surface in the first shell of an ion is reduced according to the enhanced mobility.  相似文献   

12.
Partitioning and transport of water and small solutes into and through nanopores are important to a variety of chemical and biological processes and applications. Here we study water structure in negatively charged model cylindrical [carbon nanotube (CNT)-like] nanopores, as well as the partitioning of positive ions of increasing size (Na+, K+, and Cs+) into the pore interior using extensive molecular dynamics simulations. Despite the simplicity of the simulation system-containing a short CNT-like nanopore in water carrying a uniformly distributed charge of qpore=-ne surrounded by n (=0,...,8) cations, making the overall system charge neutral-the results provide new and useful insights on both the pore hydration and ion partitioning. For n=0, that is, for a neutral nanopore, water molecules partition into the pore and form single-file hydrogen-bonded wire spanning the pore length. With increasing n, water molecules enter the pore from both ends with preferred orientations, resulting in a mutual repulsion between oriented water molecules at the pore center and creating a cavity-like low density region at the center. For low negative charge densities on the pore, the driving force for partitioning of positive ions into the pore is weak, and no partitioning is observed. Increasing the pore charge gradually leads to partitioning of positive ions into the pore. Interestingly, over a range of intermediate negative charge densities, nanopores display both thermodynamic as well as kinetic selectivity toward partitioning of the larger K+ and Cs+ ions into their interior over the smaller Na+ ions. Specifically, the driving force is in the order K+>Cs+>Na+, and K+ and Cs+ ions enter the pore much more rapidly than Na+ ions. At higher charge densities, the driving force for partitioning increases for all cations-it is highest for K+ ions-and becomes similar for Na+ and Cs+ ions. The variation of thermodynamic driving force and the average partitioning time with the pore charge density together suggest the presence of free energy barriers in the partitioning process. We discuss the role of ion hydration in the bulk and in the pore interior as well as of the pore hydration in determining the barrier heights for ion partitioning and the observed thermodynamic and kinetic selectivities.  相似文献   

13.
We utilized X-ray absorption spectroscopy (XAS) and X-ray Raman scattering (XRS) in order to study the ion solvation effect on the bulk hydrogen bonding structure of water. The fine structures in the X-ray absorption spectra are sensitive to the local environment of the probed water molecule related to the hydrogen bond length and angles. By varying the concentration of ions, we can distinguish between contributions from water in the bulk and in the first solvation sphere. We show that the hydrogen bond network in bulk water, in terms of forming and breaking hydrogen bonds as detected by XAS/XRS, remains unchanged, and only the water molecules in the close vicinity to the ions are affected.  相似文献   

14.
15.
Solvent clustering around attractive solutes is an important feature of supercritical solvation. We examine here the effects of the local density enhancement on solvatochromic shifts in electronic absorption and emission spectra in supercritical CO2. We use molecular dynamics (MD) simulation to study the spectral line shifts for model diatomic solutes that become more polar upon electronic excitation. The electronic transition is modeled as either a change from a quadrupolar to a dipolar solute charge distribution or as an increase in the magnitude of the solute dipole. Our main focus is on the density dependence of the line shifts at 320 K, which corresponds to about 1.05 times the solvent critical temperature, Tc, but results for higher temperatures are also obtained in order to determine the behavior of the line shifts in the absence of local density enhancement. We find that the extent of local density enhancement at 1.05Tc is strongly correlated with solute-solvent electrostatic attraction and that the density dependence of the emission line shifts resembles the behavior of the effective local densities, rho(eff), obtained from the first-shell coordination numbers. The differences that are seen are shown to be due to solute-solvent orientational correlations which provide an additional source of enhancement for electrostatic solvation energies and spectral line shifts.  相似文献   

16.
We study the solvation of iodide in water using density functional theory based molecular-dynamics simulations. Detailed analysis of the structural and dynamical properties of the first solvation shell is presented, showing a disruptive influence of the ion on the local water structure. Iodide-water hydrogen bonding is weak, compared to water-water hydrogen bonds. This effective repulsive ion-water interaction leads to the formation of a quite unstructured solvation shell. The dynamics of water molecules surrounding the iodide is relatively fast. The intramolecular structural and electronical properties of water molecules around the ion are not affected.  相似文献   

17.
A neutron diffraction experiment with isotopic H/D substitution on a concentrated HCl/H2O solution is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. This allows us to investigate both the changes of the water structure in the presence of ions and their solvation shell, overcoming the limitations of standard diffraction experiments. It is found that the interaction with the solutes affects the tetrahedral network of hydrogen bonded water molecules, in a manner similar to the application of an external pressure to pure water, although HCl seems less effective than other solutes, such as NaOH, at the same concentration. Consistent with experimental and theoretical data, the number of water molecules in the solution is not sufficient to completely dissociate the acid molecule. As a consequence, both dissociated H+ and Cl- ions and undissociated HCl molecules coexist in the sample, and this mixture is correctly reproduced in the simulation box. In particular, the hydrated H+ ions, forming a H3O+ complex, participate in three strong and short hydrogen bonds, while a well-defined hydration shell is found around the chlorine ion. These results are not consistent with the findings of early diffraction experiments on the same system and could only be obtained by combining high quality experimental data with a proper computer simulation.  相似文献   

18.
We have employed an anisotropic united atom model of benzene (R. O. Contreras, Ph.D. thesis, Universitat Rovira i Virgili 2002) that reproduces the quadrupolar moment of this molecule through the inclusion of seven point charges. We show that this kind of interaction is required to reproduce the solvation of these molecules in supercritical water. We have computed self-diffusion coefficient and Maxwell-Stefan coefficients as well as the shear viscosity for the mixture water-benzene at supercritical conditions. A strong density and composition dependence of these properties is observed. In addition, our simulations are in qualitative agreement with the experimental evidence that, at medium densities (0.6 g/cm(3) and 673 K), almost half of the benzene molecules have one hydrogen bond with water molecules. We also observe that these bonds are longer lived than the corresponding hydrogen bonds between water molecules. Similarly, we obtain an important reduction of the dielectric constant of the mixture with the increment of the amount of benzene molecules at medium and high densities.  相似文献   

19.
We utilize two-color two-dimensional infrared spectroscopy to measure the intermolecular coupling between azide ions and their surrounding water molecules in order to gain information about the nature of hydrogen bonding of water to ions. Our findings indicate that the main spectral contribution to the intermolecular cross-peak comes from population transfer between the asymmetric stretch vibration of azide and the OD-stretch vibration of D(2)O. The azide-bound D(2)O bleach/stimulated emission signal, which is spectrally much narrower than its linear absorption spectrum, shows that the experiment is selective to solvation shell water molecules for population times up to ~500 fs. The waters around the ion are present in an electrostatically better defined environment. Afterwards, ~1 ps, the sample thermalizes and selectivity is lost. On the other hand, the excited state absorption signal of the azide-bound D(2)O is much broader. The asymmetry in spectral width between bleach/stimulated emission versus excited absorption has been observed in very much the same way for isotope-diluted ice Ih, where it has been attributed to the anharmonicity of the OD potential.  相似文献   

20.
The coordination environment of uranyl in water has been studied using a combined quantum mechanical and molecular dynamics approach. Multiconfigurational wave function calculations have been performed to generate pair potentials between uranyl and water. The quantum chemically determined energies have been used to fit parameters in a polarizable force field with an added charge transfer term. Molecular dynamics simulations have been performed for the uranyl ion and up to 400 water molecules. The results show a uranyl ion with five water molecules coordinated in the equatorial plane. The U-O(H(2)O) distance is 2.40 A, which is close to the experimental estimates. A second coordination shell starts at about 4.7 A from the uranium atom. No hydrogen bonding is found between the uranyl oxygens and water. Exchange of waters between the first and second solvation shell is found to occur through a path intermediate between association and interchange. This is the first fully ab initio determination of the solvation of the uranyl ion in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号