首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organoaluminium and -gallium hydroxylamides (Me2GaONMe2)2, (tBu2AlONMe2)2, (tBu2GaONMe2)2 and (Me2AlONiPr2)2 have been prepared by the reaction of the hydroxylamines Me2NOH and iPr2NOH with the trialkylmetal compounds trimethylgallium, tri-tbutylaluminium and tri-tbutylgallium, respectively. All compounds have been characterised by NMR spectroscopy (1H, 13C, 15N, 17O and 27Al), by mass spectrometry and elemental analyses. The crystal structures of the four compounds have been determined, showing that they all form dimers but with different modes of aggregation: (Me2GaONMe2)2 has a Ga2O2N2 six-membered ring, (tBu2AlONMe2)2 and (Me2AlONiPr2)2 have Al2O2 four-membered rings, (tBu2GaONMe2)2 forms a Ga2O2N five-membered ring.  相似文献   

2.
Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

3.
The displacement of CO in a few simple Fe(I)-Fe(I) hydrogenase model complexes by bisphosphine ligands Ph2P-(CH2)n-PPh2 [with n = 1 (dppm) or n = 2 (dppe)] is described. The reaction of [{mu-(SCH2)2CH2}Fe2(CO)6] (1) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)6] (2) with dppe gave double butterfly complexes [{mu-(SCH2)2CH2}Fe2(CO)5(Ph2PCH2)]2 (3) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5(Ph2PCH2)]2 (4), where two Fe2S2 units are linked by the bisphosphine. In addition, an unexpected byproduct, [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5{Ph2PCH2CH2(Ph2PS)}] (5), was isolated when 2 was used as a substrate, where only one phosphorus atom of dppe is coordinated, while the other has been converted to P=S, presumably by nucleophilic attack on bridging sulfur. By contrast, the reaction of 1 and 2 with dppm under mild conditions gave only complexes [{mu-(SCH2)2CH2}Fe2(CO)5(Ph2PCH2PPh2)] (6) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5(Ph2PCH2PPh2)] (8), where one ligand coordinated in a monodentate fashion to one Fe2S2 unit. Furthermore, under forcing conditions, the complexes [{mu-(SCH2)2CH2}Fe2(CO)4{mu-(Ph2P)2CH2}] (7) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)4{mu-(Ph2P)2CH2}] (9) were formed, where the phosphine acts as a bidentate ligand, binding to both the iron atoms in the same molecular unit. Electrochemical studies show that the complexes 3, 4, and 9 catalyze the reduction of protons to molecular hydrogen, with 4 electrolyzed already at -1.40 V versus Ag/AgNO3 (-1.0 V vs NHE).  相似文献   

4.
A series of dinuclear chelate complexes of the general composition [Rh2(kappa2-L)2(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = CF3CO2-, acac-, acac-f3-) and [Rh2Cl(kappa2-L)(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = acac-, acac-f3-) has been prepared by replacement of the chloro ligands in the precursors [Rh2Cl2(mu-CR2)2(mu-SbiPr3)] by anionic chelates. The lability of the SbiPr3 bridge in the rhodium dimers is illustrated by the reactions of [Rh2(kappa2-acac)2(mu-CR2)2(mu-SbiPr3)] (7, 8) with Lewis bases such as CO, CNtBu, and SbEt3 which lead to the formation of the substitution products [Rh2(kappa2-acac)2(mu-CR2)2(mu-L')] (13-16) in excellent yields. Treatment of 7 and 8 with sterically demanding tertiary phosphanes PR3 (R3 = iPr3, iPr2Ph, iPrPh2, Ph3) affords the mixed-valence Rh0-RhII complexes [(kappa2-acac)2Rh(mu-CPh2)2Rh(PR3)] (21-24) and [(kappa2-acac)2Rh(mu-C(p-Tol)2]2Rh(PiPr3)] (25) for which there is no precedence. The terminal PiPr3 ligand of 21 is easily displaced by alkynes, CNtBu, and CO to give, by preserving the [(kappa2-acac)2Rh(mu-CPh2)2Rh] molecular core, the related dinuclear compounds 26-31 in which the coordination number of the Rh0 center is 3, 4, or 5. The molecular structures of [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-SbiPr3)] (5), [Rh2(kappa2-acac)2(mu-CPh2)2(mu-CO)] (13), [(kappa2-acac)2Rh(mu-CPh2)2Rh(PiPr3)] (21), and [(kappa2-acac)2Rh(mu-CPh2)2Rh(CNtBu)2] (30) have been determined crystallographically.  相似文献   

5.
Gallane complexes bearing amido-amine ligands -N(R)CH2CMe2CH2NMe2 [R = H or SiMe3 (TMS)], (H2Ga[N(H)CH2CMe2CH2NMe2])2, 1, H2Ga[N(TMS)CH2CMe2CH2NMe2], 2, (H(Cl)Ga[N(H)CH2CMe2CH2NMe2])2, 3, ([(TMS)2N](H)Ga[N(H)CH2CMe2CH2NMe2])2, 4, and HGa[N(TMS)CH2CMe2CH2NMe2]2, 5, were synthesized from the reactions of the quinuclidine adducts of mono- and dichlorogallane with the corresponding lithium amides. Structural determinations of compounds 1, 3, and 4 showed all were dimeric with bridging amido groups. Rather than bond to gallium the tertiary amine groups in 1 and 4 were hydrogen-bonded to the amino N-H. In the structure of compound 3 the amine group occupied an axial position in the trigonal bipyramidal geometry of the five-coordinate gallium. The results were rationalized in terms of the steric and electronic properties of gallium ligands.  相似文献   

6.
Summary The following compounds were synthesized by the reaction of secondary aliphatic amines with 2-alkoxyl-and 2 phenoxy vinylphosphonic dichlorides: the bisdimethylamides of 2-ethoxy-, 2-isopropoxy-, 2-butoxy, and 2 phonoxy vinylphosphonic acids; teh bisdiethylamides of 2-ethoxy-, 2-isopropoxy-, 2-butoxy-, and 2-phenoxyvinylphosphonic acids; the bisdibutylamides of 2-ethoxy-, 2-propoxy-, 2-isopentyloxy-, and 2-phenoxyl-vinyl-phosphonic acids; and the dipiperidides of 2-ethoxy-, 2-butoxy-, and 2-phenoxyl-vinylphosphonic acids.  相似文献   

7.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

8.
The novel macrocyclic Schiff bases upon which were fused triazole and pyrazole units and containing N, O and S inside the macrocyclic ring as donor atoms were synthesized by condensation of appropriate bis(4‐amino‐1,2,4‐triazole‐3‐yl‐sulfanyl)alkanes 2a , 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k , 2l , 2m , 2n , 2o , 2p , 2q , 2r and pyrazoledialdehyde 3 in refluxing glacial acetic acid. The structural identities of these compounds were confirmed on the basis of spectrum.  相似文献   

9.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

10.
Reaction barriers were calculated by using ab initio electronic structure methods for the reductive dechlorination of the polychlorinated ethylenes: C2Cl4, C2HCl3, trans-1,2-C2H2Cl2, cis-1,2-C2H2Cl2, 1,1-C2H2Cl2 and C2H3Cl. Concerted and stepwise cleavages of R-Cl bonds were considered. Stepwise cleavages yielded lower activation barriers than concerted cleavages for the reduction of C2Cl4, C2HCl3, and trans-1,2-C2H2Cl2 for strong reducing agents. However, for typical ranges of reducing strength concerted cleavages were found to be favored. Both gas-phase and aqueous-phase calculations predicted C2Cl4 to have the lowest reaction barrier. Additionally, the reduction of C2HCl3 was predicted to show selectivity toward formation of cis-1,2-C2HCl2* over the formation of trans-1,2-C2HCl2*, and 1,1-C2HCl2* radicals.  相似文献   

11.
芥子气模拟剂2-氯乙基乙基硫醚的光催化降解   总被引:4,自引:0,他引:4  
利用连续流动微反、原位红外和GC/MS等手段考察了芥子气模拟剂2-氯乙基乙基硫醚(2-CEES)在P25 TiO2上的光催化降解反应,证实CO2和H2O是这个反应的最终产物.详细的跟踪分析表明,除了CO2和H2O外,在反应的气相混合物中可检测到C2H4、CH3CHO、CH4、CO、HCl和H2S;少量小分子的羧酸、醚和砜;微量C2H5SC2H5、C2H5S2C2H5、C2H5SC2H4Cl和CH2ClCH2Cl等中间产物;在反应后的催化剂表面可检测到C2H5S2C2H5、C2H5SC2H4OH、C4H9S2C2H5和C2H5S2C2H4OH、等物.根据这些结果提出了2-CEES光催化降解的反应机理,推断2-CEES的光催化降解涉及脱氯、C-S键断裂、有机硫化物光聚合和裂解等复杂过程最终转化为CO2和H2O.认为各种硫物种在表面的积聚引起了催化剂的缓慢失活.  相似文献   

12.
钾镁氯化物(硫酸盐)与脲、水体系的溶度研究   总被引:7,自引:0,他引:7  
报导了KCl-MgCl2-CO(NH2)2-H2O和K2SO4-MgSO4-CO(NH2)2-H2O两个四元体系在25℃时的溶度及其饱和溶液的折光率、密度,相应的溶度图和组成-折光率、组成-密度图.前一体系中形成3个三元化合物:MgCl2·4CO(NH2)2·2H2O、MgCl2·CO(NH2)2·4H2O和KCl·MgCl2·6H2O溶度盐份图由9支共饱线、4个四元无变点组成.四元体系的水量图、性质-组成图有类似的变化.后一体系中有2个异成份溶解化合物MgSO4·CO(NH2)2·2H2O和K2SO4·MgSO4·6H2O形成,溶度等温图由7支双饱溶度线、3个四元无变点组成.对两个体系相图的相似性和差异点进行了讨论.  相似文献   

13.
The preparation and structural characterization of scandium and f-element complexes derived from the disiloxanediolate dianion, [(Ph2SiO)2O]2-, are reported. Reactions of in situ prepared Ln[N(SiMe3)2]3 (Ln = Eu, Sm, Gd) with (Ph2SiOH)2O in different stoichiometries afforded the lanthanide disiloxanediolates [Eu[[(Ph2SiO)2O]Li(Et2O)]3] (1), [[[(Ph2SiO)2O]Li(dme)]2SmCl(dme)] (2), and [[[((Ph2SiO)2O]Li(thf)2]2GdN(SiMe3)2] (3). In situ formed (Ph2SiOLi)2O reacted with anhydrous NdBr3 (molar ratio 3:1) to give polymeric [[Nd[(Ph2SiO)2O]3[mu-Li(thf)]2[mu2LiBrLi(thf)(Et2O)]]n] (4). Treatment of 3 with Ph2Si(OH)2 in the presence of acetonitrile yielded the dilithium trisiloxanediolate derivative [[Ph2Si(OSiPh2O)2][Li(MeCN)]2]2 (5), which according to an X-ray analysis displays an Li4O4 heterocubane structure. The trinuclear scandium complex [[[(Ph2SiO)2O]Sc(acac)2]2Sc(acac)] (6) was obtained by reaction of [(C5Me5)Sc(acac)2] (C5Me5 = eta5-pentamethylcyclopentadienyl) with (Ph2SiOH)2O in a 3:2 molar ratio. Selective formation of the colorless uranium(VI) derivative [U[Ph2Si(OSiPh20)2]2[(Ph2SiO)2O]] (7) was observed when uranocene, U(eta8-C8H8)2, was allowed to react with (Ph2SiOH)2O. An X-ray diffraction study of the solvated derivative [U[Ph2Si(OSiPh2O)2]2[(Ph2SiO)2O]].Et2O.TMEDA (TMEDA= N,N,N',N'-tetramethyl-ethylenediamine) (7a) revealed the presence of both the original [(Ph2SiO)2O]2- dianion as well as the ring-enlarged [Ph2Si(OSiPh2O)2]2- ligand in the same molecule.  相似文献   

14.
The reaction of Mo2(SCH2CH2S)2Cp2 (1; Cp=eta-C5H5) with an excess of an alkyne in refluxing dichloromethane affords the bis(dithiolene) complexes Mo2(micro-SCR1=CR2S)2Cp2 (2a, R1=R2=CO2Me; 2b, R1=R2=Ph; 2c, R1=H, R2=CO2Me) whereas with 1 equiv of alkyne at room temperature the mixed dithiolene-dithiolate species Mo2(micro-SCR1=CR2S)(micro-SCH2CH2S)Cp2 (3a, R1=R2=CO2Me; 3b, R1=R2=Ph) are formed. The remaining dithiolate ligand in 3 can then be converted into a different dithiolene by reaction with a second alkyne. Applying this methodology, we have used bis(diphenylphosphino)acetylene to prepare the first examples of complexes containing phosphine-substituted dithiolene ligands: Mo2{micro-SC(CO2Me)=C(CO2Me)S}{micro-SC(PPh2)=C(PPh2)S}Cp2 (2g) and Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2 (2h). Tri- and tetrametallic complexes can then be assembled by coordination of these diphosphines to CpRuCl units by reaction with CpRu(PPh3)2Cl. Electrochemical studies of the Ru(II)/Ru(III) couple in Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2(RuClCp)2 (4b) reveals that the two separate ruthenium centers are oxidized electrochemically at different potentials, demonstrating communication between them through the dimolybdenum bis(dithiolene) core. Density functional theory calculations were carried out to explore the electronic structures of these species and to predict and assign their electronic spectra.  相似文献   

15.
The action of chloromethyl ether on di(2-thienyl)methane, 1, 1-di-(2-thienyl)ethane, 2, 2-di(2-thienyl)propane, 2, 5-bis(dimethyl-2-thienylmethyl)thiophene, and 1, 1, 1-tri(2-thienyl)ethane has given, respectively: 5-chloromethyl -2 -thienylthiophene, 1, 1-bis(5-chloro-methyl-2-thienyl)ethane, 2, 2-bis(5-chloromethyl-2-thienyl)propane, 2, 5-bis(dimethyl-5-chloromethyl-2-thienylmethyl)thiophene, 1-(2-thienyl)-1, 1-bis(5-chloromethyl-2-thienyl)-ethane, and the corresponding amines: 5-diethylaminomethyl-2-thienylthiophene, 1,1-Bis(5-diethylaminomethyl-2-thienyl)ethane, 2, 2-bis(5-aminomethyl-2 -thienyl)propane, 2, 2-bis(5-methylaminomethyl-2-thienyl)propane, 2, 5-bis(dimethyl-5-dimethylaminomethyl-2-thienylmethyl)thiophene, and 2, 8, 8, 14, 20, 20-hexamethyl-2, 14-diaza-3, 2, 3, 2-α-cyclotetrathiene. The reductive desulfonation over Raney nickel of the diacetyl derivatives of 2, 2-bis(5-aminomethyl-2-thienyl)propane and 2, 2-bis(5-methylaminomethyl-2-thienyl)propane has given the diacetyl derivatives of aliphatic amines.  相似文献   

16.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

17.
对若干线型Mo一Fe一S簇合物[Cl2FeS2MoS2FeCl2][-2](1)、[S2MoS2FeCl2]^2^-(2)、[S2MoS2Fe(SPh)2][2-](3)、[S2MoS2FeS2Fe(SPh)2][3-](4)、[S2MoS2FeS2MoS2][3-](5)、Cl2FeS2FeCl2][2-](6)、[(PhS)2FeS2Fe(SPh)2][2-](7)的红外光谱进行了研究。通过比较它们的特征频率、结构参数和金属原子的氧化态,对νMo-St、νMo-SbνFe-Sb、νFe-SPh、νFe-Cl进行了归属。并对δS-Mo-S的归属作了初步探讨。文中讨论了MoS2Fe单元中Mo原子对νFe-Sb的影响, 通过振动频率与结构关系的研究揭示其内在联系及规律性。对两条途径的亲电诱导效应进行了讨论, 并提出一个能定性标志Fe→Mo电荷迁移大小的有用参数Δν值。  相似文献   

18.
The molybdenum and tungsten complexes W2(NtBu)4(pz)4(pzH).(C6H14)0.5 (pz = pyrazolate), M(NtBu)2(Me2pz)2(Me2pzH)2 (Me2pz = 3,5-dimethylpyrazolate), M(NtBu)2(tBu2pz)2 (tBu2pz = 3,5-di-tert-butylpyrazolate), M2(NtBu)4(Me2pz)2Cl2, W(NtBu)2(C2N3(iPr)2)2py2, M(NtBu)2-(CN4CF3)2py2, and W(NtBu)2(PhNNNPh)2 were prepared by various synthetic routes from the starting materials Mo(NtBu)2Cl2, W(NtBu)2(NHtBu)2, and W(NtBu)2Cl2py2. These new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use in thin film growth of metal nitride films. Mo(NtBu)2(tBu2pz)2 and W(NtBu)2(tBu2pz)2 were found to have the optimum combination of volatility and thermal stability for application in atomic layer deposition thin film growth procedures.  相似文献   

19.
The reactions of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-PR3)] (PR3= PMe34, PMe2Ph 7, PEt38) with an equimolar amount of Me3SiX (X = Cl, Br, I) afforded the unsymmetrical complexes [Rh2X(kappa2-acac)(mu-CPh2)2(mu-PR3)]5, 9-12, which contain the phosphine in a semi-bridging coordination mode. From 4 and excess Me3SiCl, the tetranuclear complex [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-PMe3)]2]6 was obtained. In contrast, the reaction of 4 with an excess of Me3SiX (X = Br, I) yielded the dinuclear complexes [Rh2X2(mu-CPh2)2(mu-PMe3)]13, 14 in which, as shown by the X-ray crystal structure analysis of 14, the bridging phosphine is coordinated in a truly symmetrical bonding mode. While related compounds with PEt3 and PMe2Ph as bridging ligands were prepared on a similar route, the complex [Rh2Cl2(mu-CPh2)2(mu-PiPr3)]19 was obtained from the mixed-valence species [(PiPr3)Rh(mu-CPh2)2Rh(kappa2-acac)2]17 and HCl. The reaction of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-SbiPr3)]3 with AsMe3 gave the related Rh(mu-AsMe3)Rh compound 21. With Me3SiCl, the acac ligands of 21 can be replaced stepwise by chloride to give [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-AsMe3)]23 and [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-AsMe3)]2]24, the latter being isomorphous to the phosphine-bridged dimer 6.  相似文献   

20.
Reactions of atomic and ligated dipositive actinide ions, An2+, AnO2+, AnOH2+, and AnO2(2+) (An = Th, U, Np, Pu, Am) were systematically studied by Fourier transform ion cyclotron resonance mass spectrometry. Kinetics were measured for reactions with the oxidants, N2O, C2H4O (ethylene oxide), H2O, O2, CO2, NO, and CH2O. Each of the five An2+ ions reacted with one or more of these oxidants to produce AnO2+, and reacted with H2O to produce AnOH2+. The measured pseudo-first-order reaction rate constants, k, revealed disparate reaction efficiencies, k/k(COL): Th2+ was generally the most reactive and Am2+ the least. Whereas each oxidant reacted with Th2+ to give ThO2+, only C2H4O oxidized Am2+ to AmO2+. The other An2+ exhibited intermediate reactivities. Based on the oxidation reactions, bond energies and formation enthalpies were derived for the AnO2+, as were second ionization energies for the monoxides, IE[AnO+]. The bare dipositive actinyl ions, UO2(2+), NpO2(2+), and PuO2(2+), were produced from the oxidation of the corresponding AnO2+ by N2O, and by O2 in the cases of UO2+ and NpO2+. Thermodynamic properties were derived for these three actinyls, including enthalpies of formation and electron affinities. It is concluded that bare UO2(2+), NpO2(2+), and PuO2(2+) are thermodynamically stable toward Coulomb dissociation to [AnO+ + O+] or [An+ + O2+]. It is predicted that bare AmO2(2+) is thermodynamically stable. In accord with the expected instability of Th(VI), ThO(2+) was not oxidized to ThO2(2+) by any of the seven oxidants. The gas-phase results are compared with the aqueous thermochemistry. Hydration enthalpies were derived here for uranyl and plutonyl; our deltaH(hyd)[UO2(2+)] is substantially more negative than the previously reported value, but is essentially the same as our deltaH(hyd)[PuO2(2+)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号