首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X‐ray standing wave (XSW) field generated under Bragg reflection condition in a periodic Mo/Si multilayer structure has been used to determine the concentration and location of various trace element contaminants embedded in different layers of that multilayer structure. We have used intense synchrotron X rays for XSW analysis. It is observed that various trace element impurities such as Cr, Fe, Ni and W get embedded unintentionally in the multilayer structure during the deposition process. Consequences of such impurity incorporation on the optical properties of the multilayer structure are discussed in hard and soft X‐ray regions. Present measurements are important in order to optimize the deposition methods on one hand and to better correlate the measured optical properties of a multilayer structure with theoretical models on the other. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The recent advances in the study of light emission from matter induced by synchrotron radiation: X‐ray excited optical luminescence (XEOL) in the energy domain and time‐resolved X‐ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X‐ray photons in, optical photons out techniques with time gating coincide with advances in third‐generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light‐emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si–CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.  相似文献   

3.
We studied the TiO2 pigment distribution along cross sections of injected isotactic polypropylene samples after they were aged by light exposure for 515 and 3000 h in accelerated test equipment. The TiO2 pigment distribution was studied so that we could understand the whitening process occurring in this type of plastic. For these studies, we used a 20‐μm X‐ray microbeam from a synchrotron light source. We observed that the aged and nonaged samples had almost homogeneous distributions of Ti in the cross sections; therefore, pigment migration could not have been responsible for the surface whitening process. There were maxima of Ti intensities that were not in the same region for all samples. This behavior could be explained by the heterogeneity of the extrusion and injection‐molding processes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 657–662, 2002; DOI 10.1002/polb.10127  相似文献   

4.
The crystalline structure of polyamide‐12 (PA12) was studied by solid‐state 13C nuclear magnetic resonance (NMR) as well as by synchrotron wide‐ and small‐angle X‐ray scattering (WAXS and SAXS). Isotropic and oriented PA12 showed different NMR spectra ascribed to γ‐ and γ′‐crystalline modifications, respectively. On the basis of the position of the first diffraction peak, the isotropic γ‐form and the oriented γ′‐form were shown to be with hexagonal crystalline lattice at room temperature. When heated, the two PA12 polymorphs demonstrated different behaviors. Above 140 °C, the isotropic γ‐PA12 partially transformed into α‐modification. No such transition was observed with the oriented γ′‐PA12 phase even after annealing at temperatures close to melting. A γ′–γ transition was observed here only after isotropization by melting point. Various structural parameters were extracted from the WAXS and SAXS patterns and analyzed as a function of temperature and orientation: the degree of crystallinity, the d‐spacings, the Bragg's long spacings, the average thicknesses of the crystalline (lc) and amorphous (la) phases, and the linear crystallinity xcl within the lamellar stacks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3720–3733, 2005  相似文献   

5.
X‐ray diffraction measurements were performed using synchrotron radiation at the SPring‐8 facility and electrochemical techniques to investigate the effect of polishing methods and storage conditions on the crystal structure of air‐formed oxide films and anodic oxide films formed on highly pure aluminum. Storage in an N2 environment hinders local film breakdown during anodizing, and it was established that the X‐ray diffraction measurements showed the presence of a γ‐Al2O3 in the anodic oxide film formed on mechanically polished (MP) specimens. Formation of γ‐Al2O3 during anodizing was inhibited by electropolishing because of the removal of the work‐hardened layer that was formed on the MP by electro‐polishing. The X‐ray diffraction results do not show clear differences in the influence of the polishing method on the crystal structure of air formed oxide film. This is due to the very fast oxidation rate of the air‐formed oxide film and very long storage times for the X‐ray measurements. The anodic oxide film formed on aluminum, which has a very flat surface, shows color and the color depended on grain orientation. The electrochemical impedance of the MP specimen is slightly lower than that of the mechanically and then electrochemically polished specimen at the middle frequency range. This impedance difference may be due to formation of γ‐Al2O3 in the amorphous anodic oxide film and the thickness of the film. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   

7.
Molecular design: The electronic structure of conjugated polyelectrolytes as a function of ionization potential (IP) and electron affinity (EA) is determined using X‐ray absorption and emission spectroscopy (see figure). Different functional groups give rise to dissimilar transport gaps and exciton binding energies.

  相似文献   


8.
The synchrotron radiation (SR) emitted by circulating high-energy electrons has extraordinary properties: The light is intensive and bright, it is tunable and highly collimated, and finally, it is linearly polarized. These exceptional properties have initiated a unique revival of many spectroscopies using electromagnetic radiation. The techniques of special concern for materials analysis which are treated in this article are: X-ray absorption, reflection, fluorescence, diffraction and topography. A number of examples will be given in order to illustrate the possibilities of these techniques when SR is used.On leave of absence from Institut für Festkörperforschung, KFA Jülich, D-5170 Jülich, Federal Republic of Germany  相似文献   

9.
Polyaniline is a model molecular system in the study of conductive polymers. Ionic liquids, on the other hand, are becoming more and more a very convenient alternative for conventional organic solvents. The dissolution of polyaniline‐emeraldine base (PANI‐EB) in imidazolium ILs leads to its doping, as indicated by optical and resonance Raman spectroscopies. In this study, it is proposed that the interaction of PANI‐EB and imidazolium ILs involves the specific interaction of the quinoid moiety of the former with the imidazolium ring of the latter, an interpretation that is also based on N K‐edge XANES measurements of neat PANI‐EB, neat ILs, and of their solutions.

  相似文献   


10.
Pd(4)Br(4)Te(3) was prepared from Pd, Te, and PdBr(2) at 700 K. Its structure was determined by single-crystal X-ray diffraction to be triclinic, P$\bar 1$, Pearson symbol aP22; a=842.5(2), b=845.0(3), c=864.8(3) pm; alpha=82.55(3), beta=73.36(2), gamma=88.80(2) degrees ; Z=2. The Br and Te atoms are arranged according to the motif of cubic closest-packed spheres in which every 15th position is vacant; the Pd atoms occupy 8/15 of the octahedral voids. The symmetry relations with the packing of spheres are derived. Prominent structural units are hollow cuboctahedral [(PdBrTe)(6)] units, the Pd atoms are positioned near the centers of the square faces of the Br(6)Te(6) cuboctahedra; the cuboctahedra and double-octahedral Pd(2)Br(4)Te(6) units are connected to strands by sharing triangular Te(3) faces. The strands are condensed by common Br atoms into layered assemblies. Conspicuously close Te--Te contacts in the Te(3) triangles indicate attractive Te--Te interactions. The valence puzzle is resolved by the formula Pd(+II)(4)Br(-I)(4)Te(-4/3)(3). Positive Te--Te Mulliken orbital populations and the Pd--K, Br--K, and Te--L(III) XANES spectra of Pd(4)Br(4)Te(3) referenced to the spectra of PdBr(2), K(2)PdBr(6), PdTe, and PdTe(2) are in accord with attractive Te--Te interactions. The measured semiconducting and diamagnetic properties are compatible with the derived picture of chemical bonding in Pd(4)Br(4)Te(3).  相似文献   

11.
Conventional X‐ray photoelectron spectroscopy (XPS) and synchrotron‐based X‐ray photoelectron spectroscopy (HRXPS) have been used to study Iceland spar calcite (CaCO3) and dolomite (CaMg(CO3)2). The obtained full widths at half maximum (FWHMs) are mostly narrower than in the previous results, which together with the symmetry of the fitted peaks indicate effective neutralisation of surface charging. Some previously unidentified features observed in the Ca 2p, C 1s and O 1s spectra of calcite have been suggested to be bulk plasmons. Also, surface core level shifts in Ca 2p (in calcite) and Mg 2p (in dolomite) spectra have been obtained and found to be consistent between XPS and HRXPS measurements. A peak attributed to carbide (CaC2) has been suggested to indicate beam‐assisted interaction with hydrocarbons found on the surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
13.
This is the first systematic study exploring the potential of high-energy EXAFS as a structural tool for lanthanoids and third-row transition elements. The K-edge X-ray absorption spectra of the hydrated lanthanoid(III) ions both in aqueous solution and in solid trifluoromethanesulfonate salts have been studied. The K-edges of lanthanoids cover the energy range from 38 (La) to 65 keV (Lu), while the corresponding energy range for the L(3)-edges is 5.5 (La) to 9.2 keV (Lu). We show that the large widths of the core-hole states do not appreciably reduce the potential structural information in the high-energy K-edge EXAFS data. Moreover, for lanthanoid compounds, more accurate structural parameters are obtained from analysis of K-edge than from L(3)-edge EXAFS data. The main reasons are the much wider k range available and the absence of double-electron transitions, especially for the lighter lanthanoids. A comparative K- and L(3)-edge EXAFS data analysis of nonahydrated crystalline neodymium(III) trifluoromethanesulfonate demonstrates the clear advantages of K-edge analysis over conventionally performed studies at the L(3)-absorption edge for structural investigations of lanthanoid and third-row transition metal compounds. The coordination chemistry of the hydrated lanthanoid(III) ions in aqueous solution and solid trifluoromethanesulfonate salts, based on the results of both the K- and L(3)-edge EXAFS data, is thoroughly discussed in the next paper in this series (I. Persson, P. D'Angelo, S. De Panfilis, M. Sandstr?m, L. Eriksson, Chem. Eur. J. 2008, 14, DOI: 10.1002/chem.200701281).  相似文献   

14.
Ionic bond or hydrogen bridge? Br?nsted proton transfer to nitrogen acceptors in organic crystals causes strong N1s core-level binding energy shifts. A study of 15 organic cocrystal and salt systems shows that standard X-ray photoelectron spectroscopy (XPS) can be used as a complementary method to X-ray crystallography for distinguishing proton transfer from H-bonding in organic condensed matter.  相似文献   

15.
Enargite, a copper arsenic sulfide with the formula Cu3AsS4 is of environmental concern due to its potential to release toxic arsenic species. The oxidation and dissolution of enargite are governed by the composition and chemical state of the outermost surface layer. Qualitative and quantitative analysis of the enargite surface can be initially obtained on the basis of X‐ray photoelectron spectroscopy (XPS) binding energy and intensity data. However, a more precise determination of the chemical state of the principal elements of enargite (copper, arsenic and sulfur) in the altered surface layer and in the bulk of the mineral requires a combined analysis based on XPS photoelectron lines and the corresponding X‐ray excited Auger lines. On the basis of results obtained on natural and synthetic enargite samples and on standards of sulfides and oxides, the Auger parameter α′ of different compounds was calculated and the Wagner chemical state plots were drawn for arsenic, copper and sulfur. Arsenic in enargite is found to be in a chemical environment similar to that of arsenides or elemental arsenic, whereas copper in enargite is in a chemical state that corresponds to copper sulfide, Cu2S, for all samples irrespective of surface treatment (natural or freshly cleaved). Only sulfur changed from a chemical state similar to that of copper or iron sulfide in freshly cleaved samples to another state in natural enargite in the as‐received state. Thus, it is the sulfur atom at the surface of enargite that is most susceptible to changes in the enargite surface state and composition. A more detailed interpretation of this behavior, based on differences in the initial and final state effects, is proposed here. The concept of Auger parameter and chemical state plot, used here for the first time for investigating enargite, has proved to be a method to unambiguously assign the chemical state of the principal elements copper, arsenic and sulfur in these minerals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Small‐angle X‐ray scattering by means of synchrotron radiation was used to study the interaction of κ‐ and ι‐carrageenan of different molar mass in the presence of the gel‐inducing ions, K+, with the ionic surfactants cetylpyridinium chloride (CPC) and dodecylpyridinium chloride (DPC). This interaction resulted in a more or less complete shrinking of the gel and in the formation of ordered periodic structures of the surfactant in conjunction with the carrageenan molecules. The influence of the polymer concentration for a given surfactant concentration, the content of surfactant for the same concentration of the polysaccharide, the molar mass, and the linear charge density of the polymer were all investigated. Decreasing the length of the alkyl chain of the surfactant, increasing the charge density of the polymer chain, and increasing the polymer concentration for the samples explored improved the ordering in the carrageenan–surfactant complexes. The structures of the κ‐carrageenan–CPC complexes were investigated as a function of temperature during reversible heating–cooling cycles, and it was shown that the addition of the surfactant lead to a more pronounced temperature stability of polymer network. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2851–2859, 2000  相似文献   

17.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

18.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   

19.
MOAnalyzer, a Matlab‐based program, has been developed to facilitate the analysis of density functional theory output files from ORCA. The program allows the user to define fragments within a molecule and then provides information on the contribution of each fragment to the molecular orbitals based on the Loewdin population analysis. Correlations to spectroscopy (X‐ray absorption and X‐ray emission) are also obtained, and the resulting information can be visualized in tables or MO diagrams. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号