首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic electrochemical studies, incorporating catalytic voltammetry and detailed potential-step manipulations, provide compelling evidence that the oxidized inactive state of [NiFe]-hydrogenases termed Unready (or Ni-A) contains a product of partial reduction of O(2) that is trapped in the active site.  相似文献   

2.
A series of mixed-valence nickel-iron dithiolates is described. Oxidation of (diphosphine)Ni(dithiolate)Fe(CO)(3) complexes 1, 2, and 3 with ferrocenium salts affords the corresponding tricarbonyl cations [(dppe)Ni(pdt)Fe(CO)(3)](+) ([1](+)), [(dppe)Ni(edt)Fe(CO)(3)](+) ([2](+)) and [(dcpe)Ni(pdt)Fe(CO)(3)](+) ([3](+)), respectively, where dppe = Ph(2)PCH(2)CH(2)PPh(2), dcpe = Cy(2)PCH(2)CH(2)PCy(2), (Cy = cyclohexyl), pdtH(2) = HSCH(2)CH(2)CH(2)SH, and edtH(2) = HSCH(2)CH(2)SH. The cation [2](+) proved unstable, but the propanedithiolates are robust. IR and EPR spectroscopic measurements indicate that these species exist as C(s)-symmetric species. Crystallographic characterization of [3]BF(4) shows that Ni is square planar. Interaction of [1]BF(4) with P-donor ligands (L) afforded a series of substituted derivatives of type [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = P(OPh)(3) ([4a]BF(4)), P(p-C(6)H(4)Cl)(3) ([4b]BF(4)), PPh(2)(2-py) ([4c]BF(4)), PPh(2)(OEt) ([4d]BF(4)), PPh(3) ([4e]BF(4)), PPh(2)(o-C(6)H(4)OMe) ([4f]BF(4)), PPh(2)(o-C(6)H(4)OCH(2)OMe) ([4g]BF(4)), P(p-tol)(3) ([4h]BF(4)), P(p-C(6)H(4)OMe)(3) ([4i]BF(4)), and PMePh(2) ([4j]BF(4)). EPR analysis indicates that ethanedithiolate [2](+) exists as a single species at 110 K, whereas the propanedithiolate cations exist as a mixture of two conformers, which are proposed to be related through a flip of the chelate ring. M?ssbauer spectra of 1 and oxidized S = 1/2 [4e]BF(4) are both consistent with a low-spin Fe(I) state. The hyperfine coupling tensor of [4e]BF(4) has a small isotropic component and significant anisotropy. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the SOMOs in complexes of the present type are localized in an Fe(I)-centered d(z(2)) orbital. The DFT calculations allow an assignment of oxidation states of the metals and rationalization of the conformers detected by EPR spectroscopy. Treatment of [1](+) with CN(-) and compact basic phosphines results in complex reactions. With dppe, [1](+) undergoes quasi-disproportionation to give 1 and the diamagnetic complex [(dppe)Ni(pdt)Fe(CO)(2)(dppe)](2+) ([5](2+)), which features square-planar Ni linked to an octahedral Fe center.  相似文献   

3.
Studies of the catalytic properties of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans by protein film voltammetry, under a H2 atmosphere, reveal and establish a variety of interesting properties not observed or measured quantitatively with other techniques. The catalytic bias (inherent ability to oxidize hydrogen vs reduce protons) is quantified over a wide pH range: the enzyme is proficient at both H2 oxidation (from pH > 6) and H2 production (pH < 6). Hydrogen production is inhibited by H2, but the effect is much smaller than observed for [NiFe]-hydrogenases from Allochromatium vinosum or Desulfovibrio fructosovorans. Under anaerobic conditions and positive potentials, the [FeFe]-hydrogenase is oxidized to an inactive form, inert toward reaction with CO and O2, that rapidly reactivates upon one-electron reduction under 1 bar of H2. The potential dependence of this interconversion shows that the oxidized inactive form exists in two pH-interconvertible states with pK(ox) = 5.9. Studies of the CO-inhibited enzyme under H2 reveals a strong enhancement of the rate of activation by white light at -109 mV (monitoring H2 oxidation) that is absent at low potential (-540 mV, monitoring H+ reduction), thus demonstrating photolability that is dependent upon the oxidation state.  相似文献   

4.
5.
An unresolved structural issue for [FeFe]-hydrogenases is the nature of the dithiol-bridging ligand in the diiron subcluster of the active site. The two most probable candidates are 1,3-dithiopropane (propane dithiol, PDT) and di-(thiomethyl)-amine (DTN). In the latter case, the dithiol-bridging ligand is assumed to play a major role in the reaction cycle. We report density-functional theory studies of the differing roles of these dithiol-bridging ligands in the infrared spectra of synthetic models and of computational representations of the diiron cluster of the active site. Our analysis shows distinct spectral features associated with the dithiol-bridging NH mode for compounds having a DTN bridge, which, however, would have been obscured by the H2O vibrations in existing measurements. However, if indeed nitrogen is present in the dithiol-bridging ligand, a combination of selective deuteration and chemical inactivation with CO would create a unique signature in an accessible region of the infrared spectrum, whose position and intensity are predicted.  相似文献   

6.
Gui  Ming-Sheng  Guan  Yu  Li  Yu-Long  Zhao  Pei-Hua 《Transition Metal Chemistry》2022,47(6):257-263
Transition Metal Chemistry - To further develop the active site mimics of azadithiolate-bridged [FeFe]-hydrogenases, a series of new diiron azadithiolate complexes...  相似文献   

7.
In order to generate renewable and clean fuels, increasing efforts are focused on the exploitation of photosynthetic microorganisms for the production of molecular hydrogen from water and light. In this study we engineered a 'hard-wired' protein complex consisting of a hydrogenase and photosystem I (hydrogenase-PSI complex) as a direct light-to-hydrogen conversion system. The key component was an artificial fusion protein composed of the membrane-bound [NiFe] hydrogenase from the beta-proteobacterium Ralstonia eutropha H16 and the peripheral PSI subunit PsaE of the cyanobacterium Thermosynechococcus elongatus. The resulting hydrogenase-PsaE fusion protein associated with PsaE-free PSI spontaneously, thereby forming a hydrogenase-PSI complex as confirmed by sucrose-gradient ultracentrifuge and immunoblot analysis. The hydrogenase-PSI complex displayed light-driven hydrogen production at a rate of 0.58 mumol H(2).mg chlorophyll(-1).h(-1). The complex maintained its accessibility to the native electron acceptor ferredoxin. This study provides the first example of a light-driven enzymatic reaction by an artificial complex between a redox enzyme and photosystem I and represents an important step on the way to design a photosynthetic organism that efficiently converts solar energy and water into hydrogen.  相似文献   

8.
First-principles density functional theory calculations of synthetic models of [FeFe]-hydrogenase are used to show that the theoretical methods reproduce observed structures and infrared spectra to high accuracy. The accuracy is demonstrated for synthetic Fe(I)Fe(I) models ([(mu-PDT)Fe2(CO)6] and [(CN)(CO)2(mu-PDT)Fe2(CO)2(CN)]2-), for which we show that their infrared spectra are sensitive to the geometric arrangement of their CO/CN ligands and can be used in conjunction with quantum-mechanical total energies to predict the correct ligand geometry. We then analyze and predict the structure of mixed-valence Fe(II)Fe(I) models ([(mu-MeSCH2C(Me)(CH2S)2)Fe2(CO)4(CN)2]x-). These capabilities promise to distinguish among the various structural isomers of the enzyme's active site which are consistent with the limited accuracy of the X-ray observations.  相似文献   

9.
Activation of the oxidized inactive state (termed Unready or Ni(u)) of the [NiFe]-hydrogenase from Allochromatium vinosum requires removal of an unidentified oxidizing entity [O], produced by partial reduction of O(2). Dynamic electrochemical kinetic studies, subjecting enzyme molecules on an electrode to sequences of potential steps and gas injections, establish the order of events in an otherwise complex sequence of reactions that involves more than one intermediate retaining [O] or its redox equivalent; fast and reversible electron transfer precedes the rate-determining step which is followed by a reaction with H(2), or the inhibitor CO, that renders the reductive activation process irreversible.  相似文献   

10.
[NiFe] hydrogenases catalyse the reaction H2↔2H++2e. Several states of the enzyme have been observed by spectroscopic methods. Among these, the two most oxidized states, called the unready Ni–A and Ni–SU states, have been especially intriguing, because they take a much longer time to activate than the corresponding ready Ni–B and Ni–SI states. It has recently been suggested that the unready states actually contain a (hydro)peroxide bridge between the Ni and Fe ions, in contrast to the hydroxide bridge in the ready states. In this paper, we use quantum refinement (crystallographic refinement, in which the molecular mechanics [MM] calculations, normally employed to supplement the crystallographic data, are replace by more accurate quantum mechanics [QM] calculations), combined QM/MM calculations, and accurate energy estimates to study the nature of a recent oxidised crystal structure of [NiFe] hydrogenase from Desulfovibrio fructosovorans. We show that the structure contains a mixture of several states in the active site. The experimental data is best explained by structures with a hydroxide bridge but with two of the cysteine ligands (one bridging and one terminal) partly oxidised. When the terminal Cys-543 ligand is oxidised, the sulphur occupies an alternative position, observed in several crystal structures. The Glu-25 residue, that forms a hydrogen bond to this sulphur, also changes position. A peroxide ligand may exist as a minor component in the crystal and the suggested structure is supported by the calculations. We suggest that oxidised states are slow-equilibrium mixtures of structures with a peroxide bound and structures with oxidised Cys residues, and that the former can be activated by replacement of the protonated peroxide with a H2 or CO ligand, as has been observed in electrochemical experiments.  相似文献   

11.
A series of diiron complexes developed as fundamental models of the two-iron subsite in the [FeFe]-hydrogenase enzyme active site show water-solubility by virtue of a sulfonate group incorporated into the -SCH(2)NRCH(2)S- dithiolate unit that bridges two Fe(I)(CO)(2)L moieties. The sulfanilic acid group imparts even greater water solubility in the presence of β-cyclodextrin, β-CyD, for which NMR studies suggest aryl-sulfonate inclusion into the cyclodextrin cavity as earlier demonstrated in the X-ray crystal structure of 1Na·2 β-CyD clathrate, where 1Na = Na(+)(μ-SCH(2)N(C(6)H(4)SO(3)(-))CH(2)S-)[Fe(CO)(3)](2), (Singleton et al., J. Am. Chem. Soc.2010, 132, 8870). Electrochemical analysis of the complexes for potential as electrocatalysts for proton reduction to H(2) finds the presence of β-CyD to diminish response, possibly reflecting inhibition of structural rearrangements required of the diiron unit for a facile catalytic cycle. Advantages of the aryl sulfonate approach include entry into a variety of water-soluble derivatives from the well-known (μ-SRS)[Fe(CO)(3)](2) parent biomimetic, that are stable in O(2)-free aqueous solutions.  相似文献   

12.
In the catalytic cycle of [NiFe] hydrogenase the paramagnetic Ni-C intermediate is of key importance, since it is believed to carry the substrate hydrogen, albeit in a yet unknown geometry. Upon illumination at low temperatures, Ni-C is converted to the so-called Ni-L state with markedly different spectroscopic parameters. It is suspected that Ni-L has lost the "substrate hydrogen". In this work, both paramagnetic states have been generated in single crystals obtained from the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Evaluation of the orientation dependent spectra yielded the magnitudes of the g tensors and their orientations in the crystal axes system for both Ni-C and Ni-L. The g tensors could further be related to the atomic structure by comparison with the X-ray crystallographic structure of the reduced enzyme. Although the g tensor magnitudes of Ni-C and Ni-L are quite different, the orientations of the resulting g tensors are very similar but differ from those obtained earlier for Ni-A and Ni-B (Trofanchuk et al. J. Biol. Inorg. Chem. 2000, 5, 36-44). The g tensors were also calculated by density functional theory (DFT) methods using various structural models of the active site. The calculated g tensor of Ni-C is, concerning magnitudes and orientation, in good agreement with the experimental one for a formal Ni(III) oxidation state with a hydride (H(-)) bridge between the Ni and the Fe atom. Satisfying agreement is obtained for the Ni-L state when a formal Ni(I) oxidation state is assumed for this species with a proton (H(+)) removed from the bridge between the nickel and the iron atom.  相似文献   

13.
Ultraviolet (UV) photolysis of (mu-S(CH 2) 3S)Fe 2(CO) 6 ( 1), a model compound of the Fe-hydrogenase enzyme system, has been carried out. When ultrafast UV-pump infrared (IR)-probe spectroscopy, steady-state Fourier transform IR spectroscopic methods, and density functional theory simulations are employed, it has been determined that irradiation of 1 in an alkane solution at 350 nm leads to the formation of two isomers of the 16-electron complex (mu-S(CH 2) 3S)Fe 2(CO) 5 within 50 ps with evidence of a weakly associated solvent adduct complex. 1 is subsequently recovered on timescales covering several minutes. These studies constitute the first attempt to study the photochemistry and reactivity of these enzyme active site models in solution following carbonyl ligand photolysis.  相似文献   

14.
The one-electron oxidations of a series of diiron(I) dithiolato carbonyls were examined to evaluate the factors that affect the oxidation state assignments, structures, and reactivity of these low-molecular weight models for the H ox state of the [FeFe]-hydrogenases. The propanedithiolates Fe 2(S 2C 3H 6)(CO) 3(L)(dppv) (L = CO, PMe 3, P i-Pr 3) oxidize at potentials approximately 180 mV milder than the related ethanedithiolates ( Angew. Chem., Int. Ed. 2007, 46, 6152). The steric clash between the central methylene of the propanedithiolate and the phosphine favors the rotated structure, which forms upon oxidation. Electron Paramagnetic Resonance (EPR) spectra for the mixed-valence cations indicate that the unpaired electron is localized on the Fe(CO)(dppv) center in both [Fe 2(S 2C 3H 6)(CO) 4(dppv)]BF 4 and [Fe 2(S 2C 3H 6)(CO) 3(PMe 3)(dppv)]BF 4, as seen previously for the ethanedithiolate [Fe 2(S 2C 2H 4)(CO) 3(PMe 3)(dppv)]BF 4. For [Fe 2(S 2C n H 2 n )(CO) 3(P i-Pr 3)(dppv)]BF 4; however, the spin is localized on the Fe(CO) 2(P i-Pr 3) center, although the Fe(CO)(dppv) site is rotated in the crystalline state. IR and EPR spectra, as well as redox potentials and density-functional theory (DFT) calculations, suggest that the Fe(CO) 2(P i-Pr 3) site is rotated in solution, driven by steric factors. Analysis of the DFT-computed partial atomic charges for the mixed-valence species shows that the Fe atom featuring a vacant apical coordination position is an electrophilic Fe(I) center. One-electron oxidation of [Fe 2(S 2C 2H 4)(CN)(CO) 3(dppv)] (-) resulted in 2e oxidation of 0.5 equiv to give the mu-cyano derivative [Fe (I) 2(S 2C 2H 4)(CO) 3(dppv)](mu-CN)[Fe (II) 2(S 2C 2H 4)(mu-CO)(CO) 2(CN)(dppv)], which was characterized spectroscopically.  相似文献   

15.
16.
Phosphine-modified thioester derivatives are shown to serve as efficient precursors to phosphine-stabilized ferrous acyl thiolato carbonyls, which replicate key structural features of the active site of the hydrogenase Hmd. The reaction of Ph(2)PC(6)H(4)C(O)SPh and sources of Fe(0) generates both Fe(SPh)(Ph(2)PC(6)H(4)CO)(CO)(3) (1) and the diferrous diacyl Fe(2)(SPh)(2)(CO)(3)(Ph(2)PC(6)H(4)CO)(2), which carbonylates to give 1. For the extremely bulky arylthioester Ph(2)PC(6)H(4)C(O)SC(6)H(3)-2,6-(2,4,6-trimethylphenyl)(2), oxidative addition is arrested and the Fe(0) adduct of the phosphine is obtained. Complex 1 reacts with cyanide to give Et(4)N[Fe(SPh)(Ph(2)PC(6)H(4)CO)(CN)(CO)(2)] (Et(4)N[2]). (13)C and (31)P NMR spectra indicate that substitution is stereospecific and cis to P. The IR spectrum of [2](-) in ν(CN) and ν(CO) regions very closely matches that for Hmd(CN). XANES and EXAFS measurements also indicate close structural and electronic similarity of Et(4)N[2] to the active site of wild-type Hmd. Complex 1 also stereospecifically forms a derivative with TsCH(2)NC, but the adduct is more labile than Et(4)N[2]. Tricarbonyl 1 was found to reversibly protonate to give a thermally labile derivative, IR measurements of which indicate that the acyl and thiolate ligands are probably not protonated in Hmd.  相似文献   

17.
Substitution of carbonyl ligands of the hydrogenase model complex [Fe2(μ-SeCH2CH(Me)CH2Se-μ)(CO)6] ( A ), by 1,1′-bis (diphenylphosphino)ferrocene (dppf), 1,2-bis (diphenylphosphino)benzene (dppbz) or 1,2-bis (diphenylphosphino)acetylene (dppac) is investigated. It is found that the reaction product depends on the diphosphine used. In the case of dppf, the product is an intramolecular bridged disubstituted complex [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)4{μ,κ11(P,P)-dppf}] ( 1 ), while the dppac-reaction produces an intermolecular bridged tetra-iron model [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)5]2{μ,κ11(P,P)-dppac} ( 2 ). However, the dppbz-reaction gives [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)42(P,P)-dppbz}] ( 3 ) in which the dppbz ligand is bonded to one Fe atom in a chelated manner. The newly prepared complexes ( 1 – 3 ) have been characterized by elemental analysis, IR, 1H-, 13C{H}-, 31P{H}-, 77Se{H}-NMR spectroscopy and X-ray structure determination. The electrochemical behavior of 2 and 3 , in absence and presence of acid, is described by cyclic voltammetric measurements in CH2Cl2.  相似文献   

18.
Protein film electrochemistry (PFE) was utilized to characterize the catalytic activity and oxidative inactivation of a bidirectional [NiFe]-hydrogenase (HoxEFUYH) from the cyanobacterium Synechocystis sp. PCC 6803. PFE provides precise control of the redox potential of the adsorbed enzyme so that its activity can be monitored under changing experimental conditions as current. The properties of HoxEFUYH are different from those of both the standard uptake and the "oxygen-tolerant" [NiFe]-hydrogenases. First, HoxEFUYH is biased toward proton reduction as opposed to hydrogen oxidation. Second, despite being expressed under aerobic conditions in vivo, HoxEFUYH is clearly not oxygen-tolerant. Aerobic inactivation of catalytic hydrogen oxidation by HoxEFUYH is total and nearly instantaneous, producing two inactive states. However, unlike the Ni-A and Ni-B inactive states of standard [NiFe]-hydrogenases, both of these states are quickly (<90 s) reactivated by removal of oxygen and exposure to reducing conditions. Third, proton reduction continues at 25-50% of the maximal rate in the presence of 1% oxygen. Whereas most previously characterized [NiFe]-hydrogenases seem to be preferential hydrogen oxidizing catalysts, the cyanobacterial enzyme works effectively in both directions. This unusual catalytic bias as well as the ability to be quickly reactivated may be essential to fulfilling the physiological role in cyanobacteria, organisms expected to experience swings in cellular reduction potential as they switch between aerobic conditions in the light and dark anaerobic conditions. Our results suggest that the uptake [NiFe]-hydrogenases alone are not representative of the catalytic diversity of [NiFe]-hydrogenases, and the bidirectional heteromultimeric enzymes may serve as valuable models to understand the diverse mechanisms of tuning the reactivity of the hydrogen activating site.  相似文献   

19.
20.
Density functional theory has been used to predict the structures of a variety of active site models for the unready states, Ni-A and Ni-SU, of the [NiFe] hydrogenase from Desulfovibrio gigas. By comparing available experimental results on Ni-A, Ni-SU, and Ni-SI with the computational results on these model complexes, we have been able to identify the most likely formulas and structures for the active sites of Ni-A and Ni-SU. Ni-A is predicted to be a Ni(III)-Fe(II) species with the bridging hydroxo ligand, rather than the expected oxo ligand, while Ni-SU is predicted to be a Ni(II)-Fe(II) species with a water molecule coordinated to the Fe center. Both have one of the terminal S atoms (cysteines) protonated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号