首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A simple physical model is proposed that describes a vapor-liquid phase transition in alkali metal vapors. The model is based on an assumption made on the character of binding between atoms in the gas phase near the critical point. This is the collective quantum cohesive energy, well-known in the theory of liquid alkali metals, which arises due to the appearance of conduction electrons and is extended to the gas region near the critical point. The parameters of the critical points of the transition and of the binodal are determined on the basis of the model calculation of the binding energy for all alkali metals. Combined, these parameters well agree with experimental results and the predictions made by other authors. The minimum metallic conductivity is evaluated. Its behavior allows one to conclude that vapor-liquid and insulator-metal transitions in alkali metal vapors coincide. This fact sheds light on the Zel’dovich-Landau problem as applied to alkali metal vapors.  相似文献   

2.
The energy loss spectra of 25-keV electrons after interaction with alkali halide vapors were measured. For the energy losses in the energy rangeE?6eV the positions of the peaks are consistent with light absorption measurements considering the energy resolution of the loss spectra. At higher energy peaks were observed, which correspond to the excitation of inner electrons belonging to the alkali atoms. From electron diffraction diagramms it follows, that for the lithium halides the concentration of dimers is considerable.  相似文献   

3.
The dynamics of spin projections of the electron shell of an alkali metal on the coordinate axis is considered in the electron paramagnetic resonance scheme with continuous pumping by biharmonic circularly polarized laser radiation. The working region is a cell with alkali vapor metal vapors and a buffer gas at a high concentration at temperature 60°C. It was found that the use of biharmonic pumping causes not only the expected electron-spin precession, but also pulsations of the electron-spin projection on the axis along which the magnetic field is directed. The frequency of these pulsations depends on the nuclear angular momentum of alkali metal atoms. In the case of the transverse electron magnetic resonance, this effect is absent.  相似文献   

4.
激光光泵碱金属磁力仪具有很高的灵敏度,测量范围可以从地球磁场到生物磁场。给出了铯(Cs)光泵磁力仪的理论分析和系统设计以及磁场梯度测量原理,铯原子能级在I—J耦合时形成超精细结构,在外磁场的作用下超精细结构进一步产生塞曼分裂形成塞曼子能级,利用激光泵浦和射频磁场能够使电子在超精细结构中进行能级跃迁,产生光磁双共振的结果,最终通过共振频率就能够达到精确测量外磁场的目的。  相似文献   

5.
The resonance fluorescence spectra of a degenerate three-level atom of the V-type in the field of an intense monochromatic wave with an arbitrary polarization composition are investigated. Analytical expressions are derived for the resonance fluorescence spectra, and the angular distribution of spontaneous fluorescence of atoms is analyzed for the D-line emitted by vapors of alkali atoms. It is shown that the number of lines in the spectrum may decrease in the case of the linear polarization of spontaneous radiation. The radiation relaxation operator is obtained for the D-line of alkali metals in the case when an atom is near the metal surface. Interference effects for such systems are analyzed.  相似文献   

6.
We consider a four-level model for alkali metal atoms with optical pumping by nonresonant light under conditions when magnetic dipole transitions are induced between energy sublevels of the hyperfine structure in the ground state. We present the dependences of the observed signal as a function of the frequency detuning of the applied rf fields relative to the resonant value, calculated in the density matrix formalism. We note the absence of a light shift in the radiofrequency-optical resonance signal, independent of the amplitude of the rf field and the optical and thermal relaxation rates. We show that when using a modulation technique for phase detection of the signal, its maximum discrimination ability is observed under conditions for simultaneous modulation of the pump light intensity and the frequency of the rf field, which in principle does not occur in the classical two-level model for optically oriented atoms in magnetic resonance. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 3, pp. 326–329, May–June, 2006.  相似文献   

7.
We present numerical results for the low-lying spectra of an electron confined in a magnetic quantum ring where the magnetic fields are zero inside the ring and constant elsewhere. Low-lying spectra for both on-center Coulomb acceptor and donor impurities, with qualitative aspects different from those without impurities doped, are also discussed.  相似文献   

8.
Magneto-optical resonances of electromagnetically induced absorption (EIA) in a cell filled with the vapor of alkali atoms and buffer gas are considered. The atoms are excited using a configuration of electromagnetic fields composed of two counter-propagating linearly polarized light waves and a static magnetic field. We focus on the influence of the residual magnetic field on the parameters of nonlinear resonances. In real experiments, a residual field is always present in the cell due to imperfect magnetic-field shielding. On the basis of calculations, we formulate practical recommendations for controlling the residual magnetic field in the experiments aimed at observation of high-quality EIA resonances. The results from this work can find application in quantum magnetometry and nonlinear optics.  相似文献   

9.
We study theoretically quantized states of the neutral and positively charged exciton complexes confined within a circular narrow ring in the presence of the magnetic field applied along the symmetry axis. We show that in the structural adiabatic limit, when the width of the pattern of the particles pathways within the ring is much smaller than its radius, the wave equations for both complexes are separable and their exact solutions can be found in a form of the Fourier series of one and two variables, respectively. We present results of calculation of the lower energies of complexes as functions of the ring's radius and the magnetic field strength for different values of the electron-to-hole mass ratio. We found that in the molecular adiabatic limit, when this ratio tends to zero and the model describes the corresponding donor complexes, the physical interpretation of the quantum-size effect and the oscillations of energy levels in threading magnetic field revealed for the excitons spectra becomes more transparent.  相似文献   

10.
D. Bejan  C. Stan 《哲学杂志》2020,100(6):749-767
ABSTRACT

We theoretically investigated the influences of the magnetic field and light polarisation on the electronic and optical properties of a GaAs/GaAlAs pseudo-elliptic quantum ring, modelled by an outer ellipsis and an inner circle, in the presence of the Rashba and Dresselhaus spin–orbit interactions and Zeeman effect. We show that Aharonov-Bohm oscillations of the energy spectrum are not affected by the presence of the Zeeman effect alone but, in the presence of Rashba and Dresselhaus spin–orbit couplings, the periodicity of certain levels becomes hardly definite. The Zeeman effect generally enhances/diminishes the separation levels produced by Rashba/Dresselhaus interactions (SOI) and when both types of SOI are considered, the effect depends on their relative strength. The magnetic field can trigger spin-flip for each type of spin–orbit interaction and Zeeman effect or their combination through anticrossings in the energy spectra. Our results reveal that the absorption spectra are very sensitive to the magnetic field and light polarisation. For all polarisations considered, the magnetic field increment leads to the redshift or blueshift of some particular peaks (an effect of this ring geometry) and a better separation of the peaks. The x-polarised light determines spectra with many small, but separated peaks while the circular polarised light leads to spectra with large peaks of high amplitude.  相似文献   

11.
We demonstrate here that the dipole-allowed optical absorption spectrum of a parabolic quantum dot subjected to an external magnetic field reflects the interelectron interaction effects when the spin-orbit (SO) interaction is also taken into account. We have investigated the energy spectra and the dipole-allowed transition energies for up to four interacting electrons parabolically confined, and have uncovered several novel effects in those spectra that are solely due to the SO interaction.  相似文献   

12.
Atomic transitions of the 39K potassium isotope in strong (up to 1 kG) longitudinal and transverse magnetic fields have been studied with a high spectral resolution. It has been shown that crossover resonances are almost absent in the saturated absorption spectrum of potassium vapors in a 30-μm-thick microcell. This, together with the small spectral width of atomic transitions (~30 MHz), allows one to use the saturated absorption spectrum for determining frequencies and probabilities of individual transitions. Among the alkali metals, potassium atoms have the smallest magnitude of the hyperfine splitting of the lower level. This allows one to observe the break of the coupling between the electronic and nuclear angular momentums at comparatively low magnetic fields B > 500 G, i.e., to implement the hyperfine Paschen–Back regime (HPB). In the HPB regime, four equidistantly positioned transitions with the same amplitude are detected in circularly polarized light (σ+). In linearly polarized light (π) at the transverse orientation of the magnetic field, the spectrum consists of eight lines which are grouped in two groups each of which consists of four lines. Each group has a special distinguished G-transition and the transition that is forbidden in the zero magnetic field. In the HPB regime, the probabilities of transitions in a group and derivatives of their frequency shifts with respect to the magnetic field asymptotically tend to magnitudes that are typical for the aforesaid distinguished G-transition. Some practical applications for the used microcell are mentioned.  相似文献   

13.
We predict that two-dimensional electrons confined by a magnetic field gradient resonantly transfer energy to the electromagnetic field by a process of inverse electron spin resonance that is realized when the frequency of an open orbit equals the Larmor frequency. The calculated emission spectra show multiple peaks modulated by strong optical nonlinearities whose frequencies may be tuned by the magnetic field gradient and the electron concentration.  相似文献   

14.
We present a quantized model of a harmonically confined dot atom with inherent damping in the presence of a transverse magnetic field. The model leads to a non-Hermitian Hamiltonian in coordinate space. We have analytically studied the effects of damping on Rabi type oscillations of the system. The model explains the decoherence of Rabi oscillations in a Josephson Junction.  相似文献   

15.
《中国物理 B》2021,30(5):50707-050707
Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies. In practice, the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small. In this paper, we present a modified analytical model to characterize the practical performance of the magnetometer more definitely. We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields. The linear-response capacity of the magnetometer is determined by these factors: the amplitude and frequency of the longitudinal carrier field, longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields. We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model. This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.  相似文献   

16.
吴正华  赵明信 《光学学报》1995,15(6):83-688
强磁场中的Cs原子有较大的超精细塞曼分裂,实验用频率可调谐的窄线宽半导体激光调谐到各超精细塞曼能级上进行光泵浦,利用稳态吸收谱方法研究了原子的光泵浦。表明基态超精细相互作用的碰撞修正项导致的驰豫跃迁是谱形状和电子自旋极化新特征的根缘。同时提出了强场下极化度的一种测量方法。  相似文献   

17.
The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for differeing sets of relaxation rates with emphasis on alkali metal vapors which have spontaneous emission dominated relaxation. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled alexandrite laserpumped cesium vapor gain cell.This work was supported by an Alfred P.Sloan Fellowship and a grant from the National Aeronautics and Space Administration (NAG-5-526)  相似文献   

18.
In this paper we report the development of new apparatus for the containment and study of dense alkali metal vapors, and the use of the apparatus to study the infrared spectra of potassium vapor. The apparatus is the first to employ aerodynamic confinement of a dense alkali vapor. We have recorded absorption spectra, thermal emission spectra, and laser-induced emission spectra of dense potassium vapor. These techniques all reveal a spectral feature near 1.1 μm which we believe originates in 3Σ+g3Σ+u transitions of the K2 molecule.  相似文献   

19.
利用原子自旋效应能够实现超高灵敏度的惯性和磁场测量。一类操控原子自旋处于无自旋交换弛豫态的器件可以进行物理参数测量。碱金属气室为该类器件的敏感表头。碱金属原子密度与原子极化率是碱金属气室的重要参数,对研究原子自旋处于无自旋交换弛豫态有着重要的作用。光的偏振效应在量子计算和原子物理研究中发挥了重要作用。利用光的偏振效应能够实现对碱金属原子密度与原子极化率的检测。提出一种基于光偏振旋转效应的碱金属原子极化率测量方法。首先对碱金属气室加恒定磁场,利用激光作为检测光,根据光偏振旋转原理,检测通过气室的偏振光的法拉第旋转角,得到碱金属气室原子密度。然后将碱金属原子抽运,利用激光作为检测光,检测通过气室的偏振光的偏转角,得到碱金属原子极化率。该方法在测量原子极化率的过程中也测量了碱金属原子密度,实现利用一套系统测量两个重要参数,具有快速测量和高灵敏度等特点,简化了实验设备及过程。对两种偏转角进行仿真分析,得到该方法实验时检测激光波长变化对偏转角的影响,根据仿真图得到检测激光波长的可取范围,验证了该方法的可行性。最后分析激光器波长波动与磁场波动对其测量精度的影响,提出实验对激光器与磁场的要求。  相似文献   

20.
We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method--a single clock laser combined with a dc magnetic field--relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline-earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10(-17) for the metrologically preferred even isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号