首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ablation processing of borosilicate glass was carried out using the fourth harmonic of the Q-switch Nd:YAG laser. The dependency of the ablation depth on irradiation pulse energy density and the dependency of the ablation depth on irradiation spot size were investigated. The average ablation depth increased with an increase in irradiation pulse energy density. When the irradiation pulse energy density was the same, the ablation depth of the focused beam with a large spot diameter was deeper than that of the focused beam with a small spot diameter. To shorten the processing time, an increase in the irradiation pulse energy density and use of a large spot size focused beam are effective. Using area scanning together with line scanning, a rectangular through hole (sub-mm size) without cracks or chips was formed in borosilicate glass of 140 μm in thickness. PACS 52.38.Mf; 42.70.Ce; 42.62.Cf  相似文献   

2.
The interactions between femtosecond (fs) laser pulses and a thin Au film deposited on a silica glass substrate were systematically investigated based on experimental data. Different structures, including microholes, nanoholes, and nanobumps, are obtained when pulses with different energies are incident on the surface of a gold film. The experimental results are discussed according to specific experimental parameters. Two physical models were constructed in order to explain the experimental results. The formation of nanoholes in a silica substrate is attributed to etching by higher order harmonic generations (HHG) when the femtosecond laser pulse interacts with the generated plasma layer, while the formation of nanobumps on the surface of an Au film is attributed to the elastic and plastic characteristics of the metal film under laser pulse irradiation.  相似文献   

3.
The dynamics of absorption after excitation of fused silica and BK7 glass with femtosecond laser radiation are visualized by transient absorption spectroscopy. Focusing laser radiation with pulse durations in the picosecond time regime in BK7 glass generates free electrons with relaxation by emission of radiation or by formation of defects. The temporal and spatial emission characteristics are observed by high-speed photography in the streak mode. The beam waist moves within the pulse duration towards the incoming laser radiation by self-focusing and with the laser radiation absorbed by multi-photon processes. The dynamics of the long lasting stress formation is visualized by time-resolved Nomarski-Photography. The modification of the glass is investigated during and after irradiation with ultra-short pulsed laser radiation (100 fs<tp<3 ps) at the wavelength =810 nm. The formation of a sound wave in fused silica and BK7 glass is observed and the mechanical stress, depending on the excitation pulse duration, is measured. PACS 06.60.Jn; 42.50.Md; 78.47.-p; 81.16.-c; 82.53.-k  相似文献   

4.
We theoretically investigated different thermal relaxation participating in the ultrafast thermionic emission processes on gold film surface with a femtosecond pulse excitation. The thermionic emission regimes under the two temperature relaxation and the thermal diffusion relaxation were demonstrated. The simulations showed that the thermionic emission properties can be defined in the regime under two temperature relaxation by reducing the laser fluence, or widening the pulse duration or increasing the laser wavelength. It was also found that there exists a transition between the two distinct thermionic emission regimes under peculiar laser parameters of laser fluence, pulse duration and laser wavelength. The results were explained as significant intervene of laser irradiation parameters into gold film thermal relaxation processes.  相似文献   

5.
The intensity dependence of the total and specific yields of positive ions desorbed from SrF2 under 193 nm and 308 nm excimer-laser irradiation has been investigated by the time-of-flight method. The following positive ion species have been detected: F+, Sr+, Sr++, SrF++ and SrF 2 + . The Sr+ and SrF+ emission yields are found to increase as E n, where E represents the laser energy per pulse. The exponent n is related to defect-initiated neutral particle emission and gas-phase ionization. The influence of surface damage on this power dependence is investigated. The F+ emission yield showed a quite different behaviour compared to that of the Sr+ and SrF+ emission. At both wavelengths the total positive ion emission yields saturate at a certain laser energy. In the saturation regime the SrF+ emission vanishes and alternative emission of F+ and Sr+ was observed at both wavelengths, but the total emission yield in the saturation regime (F+ + Sr+) remained constant. A Scanning Electron Microscope (SEM) was used to investigate the damage spots after laser irradiation for thermal effects.  相似文献   

6.
Localized desvitrifiation in strontium barium niobate glass doped with Er3+ under laser irradiation has been carried out. The samples of this study have been fabricated by the melt quenching method and doped with 5% mol of Er3+. A 1.5-W cw Ar laser was focused on the sample to obtain desvitrifiation of the glass. Evidence of the changes induced by the Ar laser has been observed through the analysis of the photoluminescence of the Er3+ ions. The transitions corresponding to 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 have been studied to analyze structure changes. Microluminescence measurements have been carried out to spatially select positions inside and outside the irradiated area. We have observed changes in the emission bands corresponding to these transitions. The emission bands from Er3+ ions in the irradiated zone show a resolved structure while they are broadened outside that area. These changes in the optical properties of the Er3+ ions indicate that the Ar-laser irradiation has produced a change in the local structure of the material. These results show that a localized desvitrifiation has been produced after the laser action and the transition from glass to glass ceramic has been completed.  相似文献   

7.
Local crystalline formation in erbium doped oxyfluoride glass has been obtained under a cw Argon laser irradiation up to 1.8 W pumping power. By exciting at 514 nm, the emission from 800 nm and 850 nm corresponding to the 4S3/2(2H11/2)→4I13/2 electronic transitions have been analyzed both inside and outside the irradiated area. The changes in the emission spectra indicate that the high power Ar laser irradiation has resulted in a localized desvitrification process. The temperature dependence of the fluorescence intensity ratio of the 800 nm and 850 nm emission bands has been used to determine the temperature of the irradiated zone. Moreover, the average lifetime of the 4S3/2(2H11/2) thermalized levels have been measured as a function of the excitation spot position. An important decrease is observed at the irradiated area. These results confirm that a localized cristalline phase has been created by the laser action.  相似文献   

8.
A characteristic of the plasma shielding effect was investigated through simultaneous measurement of time evolution of nitrogen emission in ambient air and analyte-specific emission in a glass matrix with varying lens-to-sample distance (LTSD), laser pulse energy, and repetition rate. Even under the threshold energy of air breakdown, strong nitrogen-emission lines could be measured by laser-induced breakdown spectroscopy (LIBS) for the glass samples in air at atmospheric pressure. The time evolution of the nitrogen emission was correlated reversely with a variation of various analyte emissions in the glass samples. Based on the reverse relation between the intensities of nitrogen and calcium emission intensities, the corrected values of the calcium emission line were calculated. This methodology shows consistent results independent of experimental conditions such as different LTSDs, laser energies, and repetition rates.  相似文献   

9.
This paper presents a heat transfer model to calculate the temperature field in moving glass rods heated by a CO2 laser. Conduction and radiation heat transfer in radial and axial directions are taken into account in the current model. The Rosseland diffusion approximation is incorporated to analyze the radiation heat transfer in the glass rod. A two-band model is used to simulate the spectral property of the glass. Results of the simulation show that glass rods of sufficiently large optical thickness should be treated as a semitransparent medium for radiative transfer, and it is reasonably accurate to assume it to be opaque to CO2 laser irradiation. It has been shown that the resulting temperature profile is strongly dependent on the laser parameters, i.e., the size of laser beam and the power of the laser. The diameter and speed of the moving glass rod are also important in determining the temperature field although the convective heat transfer coefficient between the glass rod and the environment has little effect.  相似文献   

10.
The morphology of a glass surface having a transparent coating processed with focused femtosecond laser pulses is investigated. The transparent coating is formed of poly-methyl methacrylate (PMMA). When the glass was coated with a PMMA film with a thickness of 2.8 μm, bumps were formed over a wide range of axial focus positions. The same laser pulse energy produced cavities when processing bare glass with no coating. The bumps were formed as a result of suppressing material emission from the glass surface by a shielding effect of plasma generated by ablation of the PMMA film and by physical blocking of the PMMA film. A thinner film with a thickness of 0.7 μm produced a reduced shielding effect, forming an exploded bump with a small pit at its center and debris around the periphery. PACS 44.10.+i; 61.80.Ba; 79.20.Ds  相似文献   

11.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

12.
The effect of laser irradiation using three different wavelengths (IR, visible and UV) generated from Nd:YAG laser on the local glass structure as well as on the valence state of the copper ions in copper phosphate glass containing CuO with the nominal composition 0.30(CuO)-(0.70)(P2O5), has been investigated by X-ray photoelectron spectroscopy (XPS). The presence of asymmetry and satellite peaks in the Cu 2p spectrum for the unirradiated sample is an indication of the presence of two different valence states, Cu2+ and Cu+. Hence, the Cu 2p3/2 spectrum was fitted to two Gaussian-Lorentzian peaks and the corresponding ratio, Cu2+/Cutotal, determined from these relative areas clearly shows that copper ions exist predominately (>86%) in the Cu2+ state for the unirradiated glass sample under investigation. For the irradiated samples the symmetry and the absence of satellite peaks in the Cu 2p spectra indicate the existence of the copper ions mostly in Cu+ state. The O 1s spectra show slight asymmetry for the irradiated as well as unirradiated glass samples which result from two contributions, one from the presence of oxygen atoms in the P-O-P environment (bridging oxygen BO) and the other from oxygen in an P-O-Cu and PO environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with laser power.  相似文献   

13.
The temporal characteristics of the Q-switched Nd-glass laser have been numerically investigated. A mathematical model describing the dynamic emission and different physical processes has been adapted. This model allows the investigation of the nonlinear saturable absorber effects on the mode characteristics of the Nd-glass laser, and studying the affects of the laser input parameters on the output laser pulse characteristics.Numerical solutions of a nonlinear rate equation system predict the generation of nanosecond pulses of Q-switched Nd-glass laser. The solutions estimate the laser density and the relative population inversion of the Nd-glass laser rod and saturable absorber for different emission regimes. The estimated results of the laser output pulse characteristics are in a good agreement with the other calculated and experimental results.  相似文献   

14.
大能量钕玻璃棒状激光器新型热管理技术   总被引:2,自引:1,他引:2       下载免费PDF全文
 针对kJ级大能量钕玻璃固体脉冲激光器,对比研究了传统恒温水冷方式和采用加热控制的新型热管理技术下的激光棒温度分布情况。结果表明,采用新型热管理技术可大大降低棒内温度梯度,减小泵浦过程中的热效应,确保大能量激光输出;而且加热循环水的最佳升温值在单泵浦脉冲引起的激光棒平均温升值附近,使得径向温差最小,该最佳升温值与脉冲间隔时间有关,比如脉冲间隔15 s时,循环水在每个脉冲过后的最佳升温值为单泵浦脉冲引起的激光棒平均温升值的0.85倍;采用加热控制后水温和激光棒温度整体升高,因此在工作一个脉冲串后,必须恢复激光棒温度到初始状态,然后再进行下一个脉冲串工作。  相似文献   

15.
Femtosecond laser-induced sub-wavelength microstructuring of a thin gold layer coated onto a quartz glass substrate is investigated. Formation of microbumps (microbubbles) and nanojets under single pulse laser irradiation is observed. Discussion of these effects and demonstration of their dependencies on the laser pulse energy and gold layer thickness are presented. PACS 42.62-b; 42.65.Re; 52.38.Mf  相似文献   

16.
Jiao Q  Song Z  Yang Z  Yu X  Qiu J 《Optics letters》2011,36(16):3091-3093
Photoreduction of samarium-doped BaCl(2)-modified aluminofluoride glass by femtosecond laser irradiation and x-ray irradiation were investigated. Photoluminescence of samarium ions indicated that photoreduction of Sm(3+)→Sm(2+) efficiently occurred in glass samples containing more than 5 mol.% BaCl(2) after femtosecond laser irradiation, while dramatic change was not observed by x-ray irradiation. Transmission electron microscope results revealed that BaCl(2) nanophases only precipitated from glass matrix with a high BaCl(2) content by focusing femtosecond laser irradiation. Samarium ions were selectively incorporated into the precipitated nanophases, resulting in the enhancement of Sm(3+) photoreduction under lower laser power.  相似文献   

17.
A new pump scheme for the realization of a practical Ar2 excimer laser operating at 126 nm has been proposed and investigated experimentally. In this scheme, pre-ionized high-pressure Ar gas was excited by an intense transversely-excited atmospheric (TEA) CO2 laser irradiation. A 100-mm-long line plasma was successfully produced at an argon gas pressure of 2 MPa. The vacuum ultraviolet emission at 126 nm from the Ar2 excimers was observed and its emission characteristics were investigated under various experimental conditions. Received: 10 December 2001 / Published online: 14 March 2002  相似文献   

18.
When the silicon material is irradiated by laser, it absorbs the laser energy leading to the temperature rise and the thermal stress. The damage effect includes melting, vaporation and thermal stress damage. Once the thermal stress exceeds the stress strength the crack will initiate. The silicon surface cracks induced by a millisecond laser are investigated. The experimental results show that three types of cracks are generated including cleavage crack, radial crack and circumferential crack. The cleavage crack is located within the laser spot. The radial crack and circumferential crack are located outside the laser spot. A two-dimensional spatial axisymmetric model of silicon irradiated by a 1064 nm millisecond laser is established. To assess what stresses generate and explain the generation mechanism of the different cracks, the thermal stress fields during laser irradiation and the cooling process are obtained using finite element method. The radial stress and hoop stress within the laser spot are tensile stress after the laser irradiation. The temperature in the center is the highest but the thermal stress in the center is not always highest during the laser irradiation. The cleavage cracks are induced by the tensile stress after the laser irradiation. The radial crack and the circumferential crack are generated during the laser irradiation.  相似文献   

19.
Micrometer-sized bumps were formed on a glass surface using a focused femtosecond laser processing in water. The bumps were formed over a wide ranges of pulse irradiation parameters, including irradiation energy and focus position. The bumps exhibited a wide variety of morphologies and sizes depending on the parameters. The use of a liquid, namely heavy water, which returns after breakdown and cavitation bubble formation, enabled us to fabricate bumps with high spatial density, which is not possible using a solid coating that is ablated. A desired arrangement of bumps on a glass surface was fabricated by tuning the processing time interval to be more than the disappearance time of a bubble, generated by focusing a femtosecond laser pulse near the water/glass interface. PACS 42.62.Cf; 42.70.Ce; 52.38.Mf; 78.47.+p; 79.20.Ds  相似文献   

20.
The characteristics of X rays of a laser plasma generated in the interaction of a femtosecond pulse with solid targets in an air atmosphere have been investigated. It has been shown that the mechanism for the generation of X rays in the interaction of short intense laser pulses with solid targets in a gas atmosphere is attributed to the generation of fast electrons in the region of the filamentation of a laser pulse. It has been proven experimentally that under such conditions, the solid target irradiated by laser radiation of even a low density of about 1015 W/cm2 very efficiently emits ∼10-keV photons. It has been shown theoretically that the maximum energy of accelerated electrons can reach ɛmax ∼ 100–200 keV under these conditions. This means that the proposed method can provide characteristic radiation with the energy of photons much higher than 10 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号