共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers 总被引:4,自引:0,他引:4
Zheng J Li L Chen S Jiang S 《Langmuir : the ACS journal of surfaces and colloids》2004,20(20):8931-8938
Molecular simulations were performed to study a system consisting of protein (e.g., lysozyme) and self-assembled monolayers (SAMs) terminating with different chemical groups in the presence of explicit water molecules and ions. Mixed SAMs of oligo (ethylene glycol) [S(CH2)4(OCH2CH2)4OH, (OEG)] and hydroxyl-terminated SAMs [S(CH2)4OH] with a mole fraction of OEG at chiOEG = 0.2, 0.5, 0.8, and 1.0 were used in this study. In addition, methyl-terminated SAMs [S(CH2)11CH3] were also studied for comparison. The structural and dynamic behavior of hydration water, the flexibility and conformation state of SAMs, and the orientation and conformation of protein were examined. Simulation results were compared with those of experiments. It appears that there is a correlation between OEG surface resistance to protein adsorption and the surface density of OEG chains, which leads to a large number of tightly bound water molecules around OEG chains and the rapid mobility of hydrated SAM chains. 相似文献
2.
Ducker RE Janusz S Sun S Leggett GJ 《Journal of the American Chemical Society》2007,129(48):14842-14843
Exposure of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) to UV light leads to the formation of aldehyde groups, leading to a simple one-step method for the introduction of reactive functional groups to protein-resistant surfaces. X-ray photoelectron spectroscopy has been used to demonstrate binding of amines to the modified surfaces, while surface plasmon resonance has shown that proteins are covalently bound. Modified OEG monolayers bind streptavidin at least as well as N-hydroxysuccinimidyl ester functionalized monolayers. Micrometer and nanometer-scale patterns are conveniently fabricated by exposing the monolayers using, respectively, a mask and a scanning near-field optical microscope. 相似文献
3.
Montague M Ducker RE Chong KS Manning RJ Rutten FJ Davies MC Leggett GJ 《Langmuir : the ACS journal of surfaces and colloids》2007,23(13):7328-7337
The UV photo-oxidation of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) has been studied using static secondary ion mass spectrometry, X-ray photoelectron spectroscopy, contact angle measurement, and friction force microscopy. OEG-terminated SAMs are oxidized to yield sulfonates, but photodegradation of the OEG chain also occurs on a more rapid time scale, yielding degradation products that remain bound to the surface via gold-sulfur bonds. The oxidation of these degradation products is the rate-limiting step in the process. Photopatterning of OEG-terminated SAMs may be accomplished by using a mask and suitable light source or by using scanning near-field photolithography (SNP) in which the mask is replaced by a scanning near-field optical microscope coupled to a UV laser. Using SNP, it is possible to fabricate patterns in SAMs with a full width at half-maximum height (fwhm) as small as 9 nm, which is approximately 15 times smaller than the conventional diffraction limit. SNP-patterned OEG-terminated SAMs may be used to fabricate protein nanopatterns. By adsorbing carboxylic acid-terminated thiols into oxidized regions and converting these to active ester intermediates, it has been possible to fabricate lines of protein molecules with widths of only a few tens of nanometers. 相似文献
4.
Wang RY Himmelhaus M Fick J Herrwerth S Eck W Grunze M 《The Journal of chemical physics》2005,122(16):164702
Vibrational sum-frequency generation (VSFG) was used to investigate the conformational changes in self-assembled monolayers (SAMs) of (1-mercaptoundec-11-yl) hexa(ethylene glycol) monomethylether (EG6-OMe) on gold when exposed to liquid water. VSFG spectra of the EG6-OMe SAMs were recorded before, during, and after exposure of the films to water and after a subsequent evacuation step. While in contact with water the entire ethylene glycol chains are found in a random, solvated state, after removal from the fluid water molecules remain absorbed only at the terminal groups of the film giving rise to distinct conformational changes. After evacuation, the structure of the EG6-OMe SAM reverts to its original state, indicating that water has been removed from the monolayer. Our findings support recent ab initio calculations and Monte Carlo simulations on the interaction of ethylene glycol-terminated monolayers with water. 相似文献
5.
A study of protein resistance of oligo(ethylene glycol) (OEG), HS(CH2)11(OCH2CH2)nOH (n = 2, 4, and 6), self-assembled monolayers (SAMs) on Au(111) surfaces is presented here. Hydroxyl-terminated OEG-SAMs are chosen to avoid the hydrophobic effect observed with methyl-terminated OEG-SAMs, particularly at high packing densities. The structure of the OEG-SAM surfaces is controlled by adjusting the assembly solvent. These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Protein adsorption on these surfaces was investigated by surface plasmon resonance (SPR). OEG-SAMs assembled from mixed ethanol and water solutions show higher packing density on gold than those from pure ethanol solution. For EG2OH- and EG4OH-SAMs, proteins (i.e., fibrinogen and lysozyme) adsorb more on the densely packed SAMs prepared from mixed ethanol and water solutions, while EG6OH-SAMs generally resist protein adsorption regardless of the assembly solvent used. 相似文献
6.
Globotriose- and oligo(ethylene glycol)-terminated self-assembled monolayers: surface forces, wetting, and surfactant adsorption 总被引:1,自引:0,他引:1
Blomberg E Claesson PM Konradsson P Liedberg B 《Langmuir : the ACS journal of surfaces and colloids》2006,22(24):10038-10046
A set of oligo(ethylene glycol)-terminated and globotriose-terminated self-assembled monolayers (SAMs) has been prepared on gold substrates. Such model surfaces are well defined and have good stability due to the strong binding of thiols and disulfides to the gold substrate. They are thus very suitable for addressing questions related to effects of surface composition on wetting properties, surface interactions, and surfactant adsorption. These issues are addressed in this report. Accurate wetting tension measurements have been performed as a function of temperature using the Wilhelmy plate technique. The results show that the nonpolar character of oligo(ethylene glycol)-terminated SAMs increases slightly but significantly with temperature in the range 20-55 degrees C. On the other hand, globotriose-terminated SAMs are fully wetted by water at room temperature. Surface forces measurements have been performed and demonstrated that the interactions between oligo(ethylene glycol)-terminated SAMs are purely repulsive and similar to those determined between adsorbed surfactant layers with the same terminal headgroup. On the other hand, the interactions between globotriose-terminated SAMs include a short-range attractive force component that is strongly affected by the packing density in the layer. In some cases it is found that the attractive force component increases with contact time. Both these observations are rationalized by an orientation- and conformation-dependent interaction between globotriose headgroups, and it is suggested that hydrogen-bond formation, directly or via bridging water molecules, is the molecular origin of these effects. 相似文献
7.
We have synthesised novel oligo(ethylene glycol), CF3-terminated switching self-assembled monolayers, which allow the force experienced by a hydrophobic object to be controlled via the ionic strength of the environment. 相似文献
8.
Skoda MW Jacobs RM Willis J Schreiber F 《Langmuir : the ACS journal of surfaces and colloids》2007,23(3):970-974
The interaction with water of protein-resistant monolayers (SAMs), self-assembled from (triethylene glycol) terminated thiol HS(CH2)11(OCH2CH2)3OMe solutions, was studied using in and ex situ polarization-modulated Fourier transform infrared spectroscopy. In particular, shifts in the position of the characteristic C-O-C stretching vibration were observed after the monolayers had been exposed to water. The shift in frequency increased when the SAM was observed in direct contact with a thin layer of water. It was found that the magnitude of the shift also depended on the surface coverage of the SAM. These findings suggest a rather strong interaction of oligo(ethylene glycol) SAMs with water and indicate the penetration of water into the upper region of the monolayer. 相似文献
9.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are surface coatings that efficiently prevent nonspecific adhesion of biomolecules to surfaces. Here, we report on SAM formation of the PEG thiol CH3O(CH2CH2O)17NHCO(CH2)2SH (PEG(17)) on three types of Au films: thermally evaporated granular Au and two types of Au films from hydrogen flame annealing of granular Au, Au(111), and Au silicide. The different Au surfaces clearly affects the morphology and mechanical properties of the PEG(17) SAM, which is shown by AFM topographs and force distance curves. The two types of SAMs found on flame-annealed Au were denoted "soft" and "hard" due to their difference in stiffness and resistance to scratching by the AFM probe. With the aim of nanometer scale patterning of the PEG(17), the SAMs were exposed by low energy (1 kV) electron beam lithography (EBL). Two distinctly different types of behaviour were observed on the different types of SAM; the soft PEG(17) SAM was destroyed in a self-developing process while material deposition was dominant for the hard PEG(17) SAM. 相似文献
10.
Malysheva L Onipko A Valiokas R Liedberg B 《The journal of physical chemistry. A》2005,109(34):7788-7796
The structural properties of self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG)-terminated and amide-containing alkanethiols (HS(CH(2))(15)CONH(CH(2)CH(2)O)(6)H and related molecules with shorter alkyl or OEG portions) on gold are addressed. Optimized geometry of the molecular constituents, characteristic vibration frequencies, and transition dipole moments are obtained using density-functional theory methods with gradient corrections. These data are used to simulate IR reflection-absorption (RA) spectra associated with different OEG conformations. It is shown that the positions and relative intensities of all characteristic peaks in the fingerprint region are accurately reproduced by the model spectra within a narrow range of the tilt and rotation angles of the alkyl plane, which turns out to be nearly the same for the helical and all-trans OEG conformations. In contrast, the tilt of the OEG axis changes considerably under conformational transition from helical to all-trans OEG. By means of ab initio modeling, we also clarify other details of the molecular structure and orientation, including lateral hydrogen bonding, the latter of which is readily possessed by the SAMs in focus. These results are crucial for understanding phase and folding characteristics of OEG SAMs and other complex molecular assemblies. They are also expected to contribute to an improved understanding of the interaction with water, ions, and ultimately biological macromolecules. 相似文献
11.
《Chemistry & biology》1997,4(10):731-737
Background: Bioactive molecules that are covalently immobilized in patterns on surfaces have previously been used to control or study cell behavior such as adhesion, spreading, movement or differentiation. Photoimmobilization techniques can be used, however, to control not only the spatial pattern of molecular immobilization, termed the micropattern, but also the surface density of the molecules — a characteristic that has not been previously exploited.Results: Oligopeptides containing the bioactive Arg-Gly-Asp cell-adhesion sequence were immobilized upon self-assembled monolayers of an oligo(ethylene glycol) alkanethiolate in patterns that were visualized and quantified by autoradiography. The amount and pattern of immobilized peptide were controlled by manipulating the exposure of the sample to a LIV lamp or a laser beam. Patterns of peptides, including a density gradient, were used to control the location and number of adherent cells and also the cell shape.Conclusions: A photo immobilization technique for decorating surfaces with micropatterns that consist of variable densities of bioactive molecules is described. The efficacy of the patterns for controlling cell adhesion and shape has been demonstrated. This technique is useful for the study of cell behavior on micropatterns. 相似文献
12.
Qin G Gu J Liu K Xiao Z Yam CM Cai C 《Langmuir : the ACS journal of surfaces and colloids》2011,27(11):6987-6994
Micro- and nanopatterns of biomolecules on inert, ultrathin platforms on nonoxidized silicon are ideal interfaces between silicon-based microelectronics and biological systems. We report here the local oxidation nanolithography with conductive atomic force microscopy (cAFM) on highly protein-resistant, oligo(ethylene glycol) (OEG)-terminated alkyl monolayers on nonoxidized silicon substrates. We propose a mechanism for this process, suggesting that it is possible to oxidize only the top ethylene glycol units to generate carboxylic acid and aldehyde groups on the film surface. We show that avidin molecules can be attached selectively to the oxidized pattern and the density can be varied by altering the bias voltage during cAFM patterning. Biotinylated molecules and nanoparticles are selectively immobilized on the resultant avidin patterns. Since one of the most established methods for immobilization of biomolecules is based on avidin-biotin binding and a wide variety of biotinylated biomolecules are available, this approach represents a versatile means for prototyping any nanostructures presenting these biomolecules on silicon substrates. 相似文献
13.
Self-assembled monolayers (SAMs) of methoxy-tri(ethylene glycol)- (EG(3)-OMe) and methyl-terminated alkanethiols (C(16)) adsorbed on polycrystalline gold were investigated by chemical force spectroscopy. Measurements were performed in aqueous electrolyte solutions depending on ionic strength and pH value. Charged and hydrophobic tips were employed as probes to mimic local patches of proteins and to study the interaction at the organic/liquid interface in detail. Force-distance curves reveal information about the origin of the observed interaction and the underlying mechanisms. The measurements confirm an effective negative surface charge to be present at the oligo(ethylene glycol) (OEG) and the methyl interface and suggest that the charges are due to the adsorption of hydroxyl ions from aqueous solution. pH-dependent measurements further support the robustness of the established charge associated with the OEG films. Its sign does not change over the whole range of investigated values between pH approximately 3.5 and approximately 10. In contrast, the hydrophobic self-assembled hexadecanethiol films on gold show an isoelectric point (IEP) around pH 4. While the mechanism of charge establishment appears to be similar for both SA films, the strength of hydrogen bonding to interfacial water, which acts as a template for hydroxyl ion adsorption, is likely to be responsible for the observed difference. 相似文献
14.
Ostblom M Valiokas R Konradsson P Svensson SC Liedberg B Garrett M Allara DL 《The journal of physical chemistry. B》2006,110(4):1830-1836
The nucleation and phase behavior of ultrathin D2O-ice overlayers have been studied on oligo(ethylene glycol) (OEG)-terminated and hydroxyl self-assembled monolayers (SAMs) at low temperatures in ultrahigh vacuum. Infrared reflection-absorption spectroscopy (IRAS) is used to characterize the ice overlayers, the SAMs, and the interactions occurring between the ice and the SAM surfaces. Spectral simulations, based on optical models in conjunction with Maxwell Garnett effective medium theory, point out the importance of including voids in the modeling of the ice structures, with void fractions reaching 60% in some overlayers. The kinetics of the phase transition from amorphous-like to crystalline-like ice upon isothermal annealing at 140 K is found to depend on the conformational state of the supporting OEG SAM surface. The rate is fast on the helical OEG SAMs and slow on the corresponding all-trans SAMs. This difference in kinetics is most likely due to a pronounced D2O interpenetration and binding to the all-trans segments of the ethylene glycol portion of the SAM. No such penetration and binding was observed on the helical OEG SAM. 相似文献
15.
In-situ spectroscopic ellipsometry (SE) was utilized to examine the formation of the self-assembled monolayers (SAMs) of the water-soluble oligo(ethylene oxide) [OEO] disulfide [S(CH(2)CH(2)O)(6)CH(3)](2) {[S(EO)(6)](2)} and two analogous thiols - HS(CH(2)CH(2)O)(6)CH(3) {(EO)(6)} and HS(CH(2))(3)O(CH(2)CH(2)O)(5)CH(3) {C(3)(EO)(5)} - on Au from aqueous solutions. Kinetic data for all compounds follow simple Langmuirian models with the disulfide reaching a self-limiting final state (d=1.2nm) more rapidly than the full coverage final states of the thiol analogs (d=2.0nm). The in-situ ellipsometric thicknesses of all compounds were found to be nearly identical to earlier ex-situ ellipsometric measurements suggesting similar surface coverages and structural models in air and under water. Exposure to bovine serum albumin (BSA) shows the self-limiting (d=1.2nm) [S(EO)(6)](2) SAMs to be the most highly protein resistant surfaces relative to bare Au and completely-formed SAMs of the two analogous thiols and octadecanethiol (ODT). When challenged with up to near physiological levels of BSA (2.5mg/mL), protein adsorption on the final state [S(EO)(6)](2) SAM was only 3% of that which adsorbed to the bare Au and ODT SAMs. 相似文献
16.
Ismail AE Grest GS Stevens MJ 《Langmuir : the ACS journal of surfaces and colloids》2007,23(16):8508-8514
We performed molecular dynamics simulations of the oligo(ethylene oxide) (OEO) self-assembled monolayers in water to determine the nature of the systems' interfacial structure and dynamics. The density profiles, hydrogen bonding, and water dynamics are calculated as a function of the area per molecule A of OEO. At the highest coverages, the interface is hydrophobic, and a density drop is found at the interface. The interfacial region becomes more like bulk water as A increases. The OEO and water become progressively more mixed, and hydrogen bonding increases within the interfacial region. Water mobility is slower within the interfacial region, but not substantially. The implications of our results on the resistance of OEO SAMs to protein adsorption are discussed. Our principal result is that as A increases the increasingly waterlike interfacial region provides a more protein-resistant surface. This finding supports recent experimental measurements that protein resistance is maximal for less than full coverage on Au. 相似文献
17.
Hayashi T Tanaka Y Koide Y Tanaka M Hara M 《Physical chemistry chemical physics : PCCP》2012,14(29):10196-10206
The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion. 相似文献
18.
Hacker CA Batteas JD Garno JC Marquez M Richter CA Richter LJ van Zee RD Zangmeister CD 《Langmuir : the ACS journal of surfaces and colloids》2004,20(15):6195-6205
Monolayers of oligo(phenylene-ethynylene) (OPE) molecules have exhibited promise in molecular electronic test structures. This paper discusses films formed from a novel molecule within this class, 2-fluoro-4-phenylethynyl-1-[(4-acetylthio)phenylethynyl]benzene (F-OPE). The conditions of self-assembled monolayer (SAM) formation were systematically altered to fabricate reproducible high-quality molecular monolayers from the acetate-protected F-OPE molecule. Detailed characterization of the F-OPE monolayers was performed by using an array of surface probes, including reflection absorbance infrared spectroscopy (RAIRS), contact angle (CA) measurements, spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and atomic force microscopy (AFM). XPS and RAIRS established that the SAM formed without removal of the F substituent and without oxidation of the thiol. The monolayer thickness, determined from SE and AFM based nanolithography, was consistent with the formation of a densely packed monolayer. The valence electronic structure of the SAM was consistent with an aromatic structure shifted by the electron-withdrawing fluorine substituent and intermolecular coupling within an oriented array of molecules. 相似文献
19.
Sun K Song L Xie Y Liu D Wang D Wang Z Ma W Zhu J Jiang X 《Langmuir : the ACS journal of surfaces and colloids》2011,27(10):5709-5712
We report a one-step, mild method to modify antifouling oligo(ethylene glycol)-terminated self-assembled monolayers. We demonstrate for the first time that self-polymerized dopamine, previously reported as an underwater adhesive, can be patterned on typical antifouling surfaces by microfluidic patterning or microcontact printing. The patterns can be applied in spatiotemporal cell patterning. 相似文献
20.
Monolayers from the newly synthesized compound methoxy-tri(ethylene glycol)-undecenyldimethylchlorosilane (CH3O(CH2CH2O)3(CH2)11Si(CH3)2Cl, MeO(EG)3C11DMS) and dodecyldimethylchlorosilane (DDMS), both pure and mixed, were prepared by self-assembly from organic solution in the presence of an organic base. The films obtained were characterized by advancing and receding contact angle measurements and ellipsometry to confirm the formation of self-assembled monolayers (SAMs). The resulting data on the covalently attached dimethylsilanes were compared to known oligo(ethylene glycol) (OEG)-terminated SAM systems based on terminal alkenes, thiolates or trihydrolyzable silanes. The composition of the mixed SAMs was found to depend directly and linearly on the composition of the silanization solution. Enhanced protein repellent properties were found for the SAMs using a variety of proteins, including the Ras Binding Domain (RBD), a protein with high relevance for cancer diagnostics. Roughly a RBD protein monolayer amount was adsorbed to silicon oxide surfaces silanized with DDMS or non-silanized silicon wafers, and in contrast, no RBD was adsorbed to surfaces silanized with MeO(EG)3C11DMS or to mixed monolayers consisting of DDMS and MeO(EG)3C11DMS if the content of OEG-silane overcame a critical content of X(EG) approximately 0.9. 相似文献