首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The photochemical yields for inactivation and amino acid destruction in hen and duck egg-white lysozyme are presented. Duck lysozyme II is devoid of histidine but it has two more tyrosine residues than does hen lysozyme. The data indicate that sensitized oxidation of the single histidine residue of hen lysozyme is of no significance for the inactivation of this lysozyme. The ultraviolet destruction of tryptophan and cystine residues appears to be equally related with the loss in enzymatic activity of hen lysozyme. In the case of duck lysozyme, however, the ultraviolet inactivation appears to be predominantly governed by the destruction of cystine residues.  相似文献   

2.
The effect of environment on cystine disruption by ultraviolet light   总被引:2,自引:0,他引:2  
When cystine is irradiated at pH 1 by 254-nm u.v. the following yields are observed: 4 cystines → 5.2 cysteines + 2.8NH3. Thus, SH production accounts for only 0.65 of the cystine destruction; further C-S breakage to give alanine or serine is not efficient. The yields for cystine and glutathione destruction are essentially the same at pH 1. However the presence of the glutamic and glycine residues stabilize the cystine in glutathione so that NH3 is not lost until the peptide bonds are hydrolyzed. Increasing the pH from 1 to 8.6 increases the yield of cystine destruction in glutathione by 50 per cent. The yield of cystine destruction is greater in both compounds when O2 is present during irradiation (e. g. the cysteic acid yield in glutathione is increased by 50 times). The overall production of SH varies by a factor of 2 in the four proteins-insulin, RNase, trypsin and lysozyme. The present data further support the earlier observation that radiation damage is quite non-random in RNase: at least two and perhaps three of the four constituent cystines must be disrupted before activity is lost: i.e. the most radiosensitive cystines are not critical for enzymic activity. Similarly, in both trypsin and lysozyme the integrity of the most radiosensitive cystines also does not appear to be critical for the retention of enzymic potential. In insulin, however, all three cystines appear to be crucial for activity and to have approximately equal radiosensitivities. These differences in sensitivity of cystines in different proteins must depend specifically upon energy transfer and/or chemical interactions between the chromophoric groups. If yields are calculated on the basis of those quanta absorbed only in the cystines, values about 5 to 8 times greater than those in the model compounds cystine and oxixized glutathione are obtained. The yields of cystine destruction are much higher in those protiens which contain trypotophan.  相似文献   

3.
Equations are proposed for the estimation of quantum yields for cystine destruction and disulfide protein inactivation during u.v.-irradiation in acidic and neutral solutions. The formulas permit a discussion of energy transfer from excited aromatic amino acids to cystines and/or of chemical reactions between excited tryptophans or tyrosines and cystines. The results are discussed with regard to general aspects of the photo-biochemistry of enzymes.  相似文献   

4.
Abstract Equations are proposed for the estimation of quantum yields for cystine destruction and disulfide protein inactivation during u.v.-irradiation in acidic and neutral solutions. The formulas permit a discussion of energy transfer from excited aromatic amino acids to cystines and/or of chemical reactions between excited tryptophans or tyrosines and cystines. The results are discussed with regard to general aspects of the photo-biochemistry of enzymes.  相似文献   

5.
In mature collagen type III the homotrimer is C-terminally cross-linked by an interchain cystine knot consisting of three disulfide bridges of unknown connectivity. This cystine knot with two adjacent cysteine residues on each of the three alpha chains has recently been used for the synthesis and expression of model homotrimers. To investigate the origin of correct interchain cysteine pairings, (Pro-Hyp-Gly)(n) peptides of increasing triplet number and containing the biscysteinyl sequence C- and N-terminally were synthesised. The possibilities were that this origin may be thermodynamically coupled to the formation of the collagen triple helix as happens in the oxidative folding of proteins, or it could represent a post-folding event. Only with five triplets, which is known to represent the minimum number for self-association of collagenous peptides into a triple helix, air-oxidation produces the homotrimer in good yields (70 %), the rest being intrachain oxidised monomers. Increasing the number of triplets has no effect on yield suggesting the formation of kinetically trapped intermediates, which are not reshuffled by the glutathione redox buffer. N-terminal incorporation of the cystine knot is significantly less efficient in the homotrimerisation step and also in terms of triple-helix stabilisation. Compared to an artificial C-terminal cystine knot consisting of two interchain disulfide bridges, the collagen type III cystine knot produces collagenous homotrimers of remarkably high thermostability, although the concentration-independent refolding rates are not affected by the type of disulfide bridging. Since the natural cystine knot allows ready access to homotrimeric collagenous peptides of significantly enhanced triple-helix thermostability it may well represent a promising approach for the preparation of collagen-like innovative biomaterials. Conversely, the more laborious regioselectively formed artificial cystine knot still represents the only synthetic strategy for heterotrimeric collagenous peptides.  相似文献   

6.
Peptides with biological functions often contain disulfide bridges connecting two cysteine residues. In an attempt to screen biological fluids for peptides containing cysteine residues, we have developed a sensitive and specific method to label cysteines selectively and detect the resulting molecular mass shift by differential mass spectrometry. First, reduction of disulfide bridges and carboxyamidomethylation of free thiols is adjusted to quantitatively achieve cysteine alkylation for complex peptide extracts. In a second step, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) before and after chemical derivatization is performed, followed by differential analysis to determine shifted peaks; shifted peaks belong to cysteine-containing peptides, other peaks remain unchanged. The number of cysteines can then be determined by the resulting molecular mass shift. Free, reduced cysteines are shifted by 57 u, two oxidized cysteines involved in disulfide bridges (cystine) result in a shift to higher mass per disulfide bridge of 116 u. Disulfide bridges connecting different amino acid chains like insulin break up during reduction. In this case, two peaks with lower molecular masses result from a single one in the unmodified sample. With this technique, we were able to identify cysteine-containing peptides and short fragments of proteins present in human blood filtrate.  相似文献   

7.
Disulfide stretching vibrations for bovine growth hormone (bGH) occur in a vibrational envelope centered at 540 cm-1 which spans 480-580 cm-1. A multitude of vibrational bands present in this envelope, that are not related to disulfide stretching, emphasize the need for model compounds when assigning S-S stretching modes. Raman spectroscopic data for bGH analogs, in which one or both of the two disulfide bridges have been selectively cleaved, have been used to characterize the S-S stretching envelope for the two cystine links in bGH. The Raman data for the r-bGH analogs indicate that the number of disulfide bonds present in r-bGH is determined, not by the observance of the presence or absence of a single spectral peak, but by the relative intensity of vibrational envelope from 520-560 cm-1. Cleavage of disulfide bridges in bGH results in a general decrease in vibrational spectral intensity in the 520-560 cm-1 range. This decrease in intensity is proportional to the number of cystine links severed.  相似文献   

8.
Irradiation of pH 7, aqueous solutions of 5-bromouracil (BU) in the presence of cysteine peptide-like derivatives at 308 nm using a XeCl excimer laser yielded initial formation of only uracil (U) and the corresponding cystine derivative. Continued irradiation yielded an S-uracilylcysteinyl adduct as well as additional U and cystine derivative. Similar irradiation of a solution of BU and a cystine derivative yielded initial formation of U and the S-uracilylcysteinyl adduct. Formation of these products as well as secondary products of uracil photochemistry was observed upon irradiation of the respective solutions with 254 nm light. With 308 nm laser excitation, U-Cys adduct formation and reduction of BU to U are proposed to occur via initial electron transfer from the disulfide of the cystine derivative to triplet BU. The quantum yield of BU destruction with 308 nm excitation in the presence of cystine derivative is 1.1 X 10(-3). Reaction of triplet BU with the cysteine derivative does not yield U-Cys adduct but U and cystine derivative. A possible byproduct of reduction of triplet BU to U by a cysteinyl residue in a protein BU-DNA complex is a sulphenyl bromide which might yield a protein-DNA crosslink via nucleophilic substitution on sulfur by a nucleophilic site in DNA.  相似文献   

9.
Disulfide‐rich peptides containing three or more disulfide bonds are promising therapeutic and diagnostic agents, but their preparation is often limited by the tedious and low‐yielding folding process. We found that a single cystine‐to‐diaminodiacid replacement could significantly increase the folding efficiency of disulfide‐rich peptides and thus improve their production yields. The practicality of this strategy was demonstrated by the synthesis and folding of derivatives of the μ‐conotoxin SIIIA, the preclinical hormone hepcidin, and the trypsin inhibitor EETI‐II. NMR and X‐ray crystallography studies confirmed that these derivatives of disulfide‐rich peptide retained the correct three‐dimensional conformations. Moreover, the cystine‐to‐diaminodiacid replacement enabled structural tuning, thereby leading to an EETI‐II derivative with higher bioactivity than the native peptide.  相似文献   

10.
Infrared and Raman spectra have been obtained for lyophilized recombinant bovine growth hormone (r-bGH), partially reduced, and completely reduced r-bGH, plus a tryptic digest fragment of r-bGH. Amide I and II data indicate r-bGH to have substantial helical character. Partially reduced r-bGH, in which the carboxyl terminal disulfide bridge (residues 181, 189) has been cleaved, has slightly less helical content than r-bGH. The spectral data indicate that breaking the carboxyl terminal cystine link produces only localized structural alterations. The additional cleavage of the second disulfide bridge (residues 53,164) leads to a further decrease in helix content, accompanied by increases in beta-sheet and disordered structures. A tryptic digest r-bGH fragment (residues 96-133), which contains a small amount of biological activity (approximately 10%), has predominantly helical structure.  相似文献   

11.
Covalent labeling along with mass spectrometry is a method that is increasingly used to study protein structure. Recently, it has been shown that diethylpyrocarbonate (DEPC) is a powerful labeling reagent because it can modify up to 30% of the residues in the average protein, including the N-terminus, His, Lys, Tyr, Ser, Thr, and Cys residues. We recently discovered, however, that Cys residues that form disulfide bonds appear to be modified by DEPC as well. In this work, we demonstrate that disulfide linked Cys residues are not actually reactive with DEPC but, instead, once reduced, free Cys residues can capture a carbethoxy group from other modified amino acids via a solution-phase reaction that can occur during the protein digestion step. This “scrambling” of carbethoxy groups decreases the amount of modification observed at other residues and can potentially provide incorrect protein structural information. Fortunately, label scrambling can be completely avoided by alkylating the free thiols after disulfide reduction.  相似文献   

12.
The mechanism of the unfolding of human serum albumin by urea was studied using d.c. polarography. It was found that this reaction is a complex process which cannot be described in terms of a two-state transition model. As well as the Brdi?ka catalytic current we have also studied the reduction current of disulfide groups in native and denatured human serum albumin. The number of cystine residues accessible for electrode reduction in native and denatured protein was calculated. On the basis of these results a scheme for the unfolding of human serum albumin by urea is proposed.  相似文献   

13.
The cutinase from Fusarium solani pisi is an enzyme with a single L-tryptophan (Trp) involved in a hydrogen bond with an alanine (Ala) residue and located close to a cystine formed by a disulfide bridge between two cysteine (Cys) residues. The Cys strongly quenches the fluorescence of Trp by both static and dynamic quenching mechanisms. The Trp fluorescence intensity increases by about fourfold on protein melting because of the disruption of the Ala-Trp hydrogen bond that releases the Trp from the vicinity of the cystine residue. The Trp forms charge-transfer complexes with the disulfide bridge, which is disrupted by UV light irradiation of the protein. This results in a 10-fold increase of the Trp fluorescence quantum yield because of the suppression of the static quenching by the cystine residue. The Trp fluorescence anisotropy decays are similar to those in other proteins and were interpreted in terms of the wobbling-in-cone model. The long relaxation time is attributed to the Brownian rotational correlation time of the protein as a whole below the protein-melting temperature and to protein-backbone dynamics above it. The short relaxation time is related to the local motion of the Trp, whose mobility increases on protein denaturation.  相似文献   

14.
A one-pot method for the regioselective formation of the three disulfide bridges of the heat-stable bacterial enterotoxin STa, residues 5–18, employing a temperature-controlled orthogonal protecting group scheme is reported. The protecting groups trityl, t-butyl and 4-methylbenzyl were chosen for the selective formation of the three cystine residues. Cleavage of the peptide from the solid support afforded a partially S-protected crude product with two free thiol groups. The first disulfide linking Cys 6 to Cys 14 was formed by oxidation of the dithiol peptide in a mixture of water/acetonitrile/DMSO. Following solvent removal, the second disulfide between Cys 5 and Cys 10 was formed directly by simultaneous cleavage and oxidation of the t-butyl groups in TFA/DMSO/anisole at room temperature. Subsequent heating of this solution initiated cleavage of the 4-methylbenzyl groups with concomitant oxidation of Cys 9 and Cys 17 yielding the desired three disulfide product.  相似文献   

15.
The feasibility of nanoelectrospray mass spectrometry (nanoESI) for the direct analysis of protein chemical reactions and structural changes of proteins has been evaluated. Taking advantage of the long spraying time and the capability of nanoESI for employing a wide range of solvent conditions such as buffers and detergents, applications of monitoring reaction pathways, and dynamics have been carried out with several peptides and proteins. The time course of proteolytic digestions with trypsin and pepsin was investigated for several model polypeptides, and nanoESI showed to provide an efficient tool for optimising digestion conditions for the mass spectrometric peptide mapping analysis. Examples of specific protein chemical modification reactions at arginine and tyrosine residues illustrate the feasibility of nanoESI to monitoring reaction yields and modification sites for more than 180 min. Furthermore, changes of the pattern of protonated molecules caused by temperature effects and by protein unfolding due to disulfide bond reduction have been studied with the model proteins cytochrome c and hen eggwhite lysozyme. The results indicate that nanoESI is an efficient technique for the direct, molecular characterisation of protein-chemical reactions in solution.  相似文献   

16.
Protocols for the analysis of the sulfhydryl content in peptides and proteins using chemical derivatization by organomercurial reagents and analysis by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have been developed. The number of reactive cysteine residues in peptides and proteins can be determined by exploiting the affinity and selectivity of organomercurial reagents for macromolecular thiols. Mass shifts observed in MALDI mass spectra obtained before and after cysteine derivatization with p-hydroxy-mercuribenzoate (pHMB) permit the number of free sulfhydryl groups to be determined. The pHMB derivative of each free cysteine residue provides a mass shift of 321 u, overcoming limitations in the mass resolution of MALDI time-of-flight mass spectrometry. Reactive cysteine residues in a macromolecule can be selectively derivatized by using a fivefold molar excess of pHMB reagent. Total sulfhydryl content (i.e., cysteine and cystine) can be determined after disulfide reduction. However, analyses for total cysteine content are more complex, requiring protein denaturation, cystine reduction, and sample purification before derivatization and analysis by MALDI-MS. Conditions for sample denaturation, alkyl-phosphine reduction, pHMB derivatization, and sample purification by analyte adsorption and desalting on protein transfer membranes, are described for cysteine/cystine analysis performed on microgram (10–200 pmol) quantities of somatostatin, insulin, hemoglobin, and β-lactoglobulin.  相似文献   

17.
The thiocyanogenation of 1, 3-disubstituted perimidones gives good yields of their 6 (7)-monothiocyano and 6, 7-dithiocyano derivatives. Alkaline hydrolysis of these derivatives leads to the formation of the corresponding disulfides. The reduction of 1, 3-dimethylperimidone-6,7-disulfide is accompanied by the destruction of the disulfide bridge and may be used for the synthesis of 6,7-dialkylmercaptoperimidones.Communication 57, see ref. [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1493–1496, November, 1985.  相似文献   

18.
Mass spectrometry, proteomics, and protein chemistry methods are used to characterize the cleavage products of 79 kDa transferrin proteins induced by iron-catalyzed oxidation, including a novel C-terminal polypeptide released upon disulfide reduction. Top-down electrospray ionization tandem mass spectrometry (ESI-MS/MS) of intact multiply-charged transferrin from a variety of species (human, bovine, rabbit, chicken) performed on a quadrupole time-of-flight mass spectrometer yields multiply-charged b(n)-products originating near residues 56-69 from the N-terminal region, in addition to their complementary y(n)-products. Incubation of transferrin with reductants, such as dithiothreitol (DTT) or tris(2-carboxyethyl)-phosphine (TCEP), yields an increase in multiple charging observed by ESI-MS and an increase in molecular weight consistent with disulfide reduction. However, mammalian transferrins release a 6-8 kDa fragment upon disulfide reduction. Protein acetylation and MS/MS sequencing demonstrate that the fragment originates from the C-terminus of the protein, and that it is a separate polypeptide linked via three disulfide bonds to the main transferrin chain. The existence of a separate C-terminal chain is not annotated in protein sequence databases and, to date, has not been reported in the literature. Iron-catalyzed cleavage induces fragments originating from both the N- and C-terminus of transferrin.  相似文献   

19.
The mechanochemistry of the disulfide bridge--that is, the influence of an externally applied force on the reactivity of the sulfur-sulfur bond--is investigated by unrestricted Kohn-Sham theory. Specifically, we apply the COGEF (constrained geometry simulates external force) approach to characterize the mechanochemistry of the disulfide bond in three different chemical environments: dimethyl disulfide, cystine, and a 102-atom model of the I27 domain in the titin protein. Furthermore, the mechanism of the thiol-disulfide reduction reaction under the effect of an external force is investigated by considering the COGEF potential for the adduct and transition-state clusters. With the unrestricted Becke-three-parameter-Lee-Yang-Parr (UB3LYP) exchange-correlation functional in the 6-311++G(3df,3pd) orbital basis, the rupture force of dimethyl disulfide is 3.8 nN at a disulfide bond elongation of 35 pm. The interaction with neighboring groups and the effect of conformational rigidity of the protein environment have little influence on the mechanochemical characteristics. Upon stretching, we make the following observations: the diradical character of the disulfide bridge increases; the energy difference between the singlet ground state and low-lying triplet state decreases; and the disulfide reduction is promoted by an external force in the range 0.1-0.4 nN. Our model of the interplay between force and reaction mechanism is in qualitative agreement with experimental observations.  相似文献   

20.
The yields of molecular products resulting from radiolysis of hydroxyl-containing amino acids and dipeptides under various conditions were determined. The possibility of a new radiation-induced destruction pathway has been shown for serine and threonine, as well as for the dipeptides having residues of these amino acids at the N-terminal part of the respective molecule. This process includes formation of N-centered radicals from the starting molecules followed by their decomposition with elimination of side substituents. On radiolysis, serine and threonine were also shown to undergo free-radical destruction to form acetaldehyde and acetone, respectively. A mechanism has been proposed including consecutive stages of fragmentation of α-hydroxyl-containing carbon-centered radicals with elimination of ammonia and decomposition of the secondary radicals with elimination of CO2. The yields of CO2 obtained on radiolysis of serine and threonine were significantly higher (except for solutions at pH 12) than those for alanine and valine, which have no hydroxyl groups in their structures. The obtained data indicate that the hydroxyl-containing amino acids occupy a special place among other amino acids as regards the variety of radiation-induced reactions which they may undergo due to their structural features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号