首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of titanium complexes have been prepared using either salt metathesis or amine elimination reactions. Reacting the potassium salt of Ap*H {Ap*H = N-(2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)pyridin-2-yl]amine} (1) with [TiCl(4)(THF)(2)] results in the formation of a nucleophilic ring-opening product of the coordinated tetrahydrofuran (THF) ligand [Ap*TiCl(2)(OC(4)H(8)Cl)] (7). Alkylation with benzylmagnesium chloride gave rise to the corresponding benzyl complex [Ap*TiBn(2)(OC(4)H(8)Cl)] (8). However, THF ring opening was overcome by adopting an amine elimination route instead of salt metathesis. Mono(aminopyridinato)titanium trichloro complexes were prepared in high yields using [(CH(3))(2)NTiCl(3)], together with the corresponding sterically demanding aminopyridine as the starting material. The synthesized complexes could then be alkylated selectively. These complexes were characterized by spectroscopic methods, and their behavior in olefin polymerization and copolymerization of ethene and propene was explored. These mono(aminopyridinato)titanium trichloro complexes are less active if activated with methylaluminoxane (MAO). However, the activity increases strongly if MAO is replaced by d-MAO ("dry methylaluminoxane"). The catalysts show moderate activity toward propene polymerization, while ethylene-propylene copolymers in high-productivity with separated propene units were observed. The catalysts are also highly active in the co- and terpolymerization of 2-ethylidenenorbornene (ENB) with ethylene or ethylene-propylene, together with a very good incorporation of ENB. In all cases, the activity increases with an increase in the steric bulk of the protecting ligand.  相似文献   

2.
Stoichiometric-deficient lithiation of (2,6-diisopropylphenyl)(4-methylpyridin-2-yl)amine and reaction with [(cod)PdCl2] (cod = 1,5-cyclooctadiene) yield a dimeric Pd complex. X-ray structural analysis of this complex reveals a very short Pd-Pd distance (2.429 A). Topological analysis of the electron density and the electron localization function from scalar relativistic density functional theory calculations clearly indicate a Pd(I)-Pd(I) sigma-bonding interaction, for which the corresponding occupied localized orbital can be identified.  相似文献   

3.
Su Y  Zhao Y  Gao J  Dong Q  Wu B  Yang XJ 《Inorganic chemistry》2012,51(10):5889-5896
Two alkali metal complexes of a bridging 2,5-diamino-1,4-benzoquinonediimine ligand (dipp-dabqdiH(2)), [(thf)(2)Li(μ-dipp-dabqdi)Li(thf)(2)] (1) and [(dme)(1.5)Na(μ-dipp-dabqdi)Na(dme)(1.5)](n) (2, dme = 1,2-dimethoxyethane), have been synthesized by the reaction of dipp-dabqdiH(2) with Li(n)Bu or sodium metal. In addition, treatment of 1,2,4,5-tetrakis(2,6-diisopropylamino)benzene (dipp-tabH(4)) with potassium metal in dme afforded the complex [(dme)(2)K(μ-dipp-tabH(2))K(dme)(2)] (3). X-ray crystal diffraction analyses revealed that complexes 1 and 3 have dinuclear structures, while the sodium complex 2 aggregates to a one-dimensional polymer through bridging dme ligands. With increasing ion radius, the coordination number of the alkali metal (Li, Na, and K) increases from four to five to six, while the coordination geometry changes from distorted tetrahedral to square pyramidal and further to octahedral in 1, 2, and 3, respectively. The salt metathesis reactions of 1 and 2 with anhydrous ZnCl(2) yielded the ion-contacted zinc complexes [(thf)(3)Li(μ-Cl)ClZn(μ-dipp-dabqdi)ZnCl(μ-Cl)Li(thf)(3)] (4), [(dme)(2)Li(μ-Cl)ClZn(μ-dippdabqdi)ZnCl(μ-Cl)Li(dme)(2)] (5), and [(dme)(2)Na(μ-Cl)(2)Zn(μ-dipp-dabqdi)Zn(μ-Cl)(2)Na(dme)(2)] (6), respectively. The ligand exists as the dianionic form in compounds 1-6 upon double deprotonation, and a complete electronic delocalization (except for 3) of the quinonoid π-system is observed between the metal centers over the two N═C-C═C-N halves of the ligand. The electronic structures of the complexes were studied by density functional theory (DFT) computations.  相似文献   

4.
A series of unprecedented organoiron complexes of the formal oxidation states -2, 0, +1, +2, and +3 is presented, which are largely devoid of stabilizing ligands and, in part, also electronically unsaturated (14-, 16-, 17- and 18-electron counts). Specifically, it is shown that nucleophiles unable to undergo beta-hydride elimination, such as MeLi, PhLi, or PhMgBr, rapidly reduce Fe(3+) to Fe(2+) and then exhaustively alkylate the metal center. The resulting homoleptic organoferrate complexes [(Me 4Fe)(MeLi)][Li(OEt 2)] 2 ( 3) and [Ph 4Fe][Li(Et 2O) 2][Li(1,4-dioxane)] ( 5) could be characterized by X-ray crystal structure analysis. However, these exceptionally sensitive compounds turned out to be only moderately nucleophilic, transferring their organic ligands to activated electrophiles only, while being unable to alkylate (hetero)aryl halides unless they are very electron deficient. In striking contrast, Grignard reagents bearing alkyl residues amenable to beta-hydride elimination reduce FeX n ( n = 2, 3) to clusters of the formal composition [Fe(MgX) 2] n . The behavior of these intermetallic species can be emulated by structurally well-defined lithium ferrate complexes of the type [Fe(C 2H 4) 4][Li(tmeda)] 2 ( 8), [Fe(cod) 2][Li(dme)] 2 ( 9), [CpFe(C 2H 4) 2][Li(tmeda)] ( 7), [CpFe(cod)][Li(dme)] ( 11), or [Cp*Fe(C 2H 4) 2][Li(tmeda)] ( 14). Such electron-rich complexes, which are distinguished by short intermetallic Fe-Li bonds, were shown to react with aryl chlorides and allyl halides; the structures and reactivity patterns of the resulting organoiron compounds provide first insights into the elementary steps of low valent iron-catalyzed cross coupling reactions of aryl, alkyl, allyl, benzyl, and propargyl halides with organomagnesium reagents. However, the acquired data suggest that such C-C bond formations can occur, a priori, along different catalytic cycles shuttling between metal centers of the formal oxidation states Fe(+1)/Fe(+3), Fe(0)/Fe(+2), and Fe(-2)/Fe(0). Since these different manifolds are likely interconnected, an unambiguous decision as to which redox cycle dominates in solution remains difficult, even though iron complexes of the lowest accessible formal oxidation states promote the reactions most effectively.  相似文献   

5.
Treatment of a cobalt-containing diphosphine ligand, [[mu-P,P-PPh2CH2PPh2]Co2(CO)4[mu-PPh2C[triple bond]CPPh2]] 1 with metal complexes W(CO)6, Ru3(CO)12, AuCl(tht)(tht = tetrahydrothiophene) and (COD)PdCl2(COD = 1,5-cycloctadiene) gave 1-chelated metal complexes [(1)W(CO)4], [(mu-1)Ru3(CO)10] 4, [(1)(AuCl)2] 5 and [(1)PdCl2] 6, respectively. All these compounds were characterized by spectroscopic means whereas 3, 4 and 6 were also studied by X-ray diffraction. These compounds display chelating and bridging modes of metal-phosphine complexation. Variable-temperature 1H and 31P NMR experiments were carried out for 3-6 and revealed that the fluxional behavior of each individual bridging dppm fragment was affected greatly by the bite angle of 1 in each metal complex. Suzuki cross-coupling reactions were satisfactorily catalyzed by under mild conditions. The reactions of aryl halides or iodothiophenes with chloroform and alkali in biphasic solution utilizing a catalytic amount of result into the formation of benzoic and thiophenic acids, respectively.  相似文献   

6.
By reaction of the geometrically incomplete cubane-like clusters [(eta(5)-Cp')(3)Mo(3)S(4))][pts] and [(eta(5)-Cp')(3)W(3)S(4)][pts] (Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) with group 10 alkene complexes, three new heterobimetallic clusters with cubane-like cluster cores were isolated: [(eta(5)-Cp')(3)W(3)S(4)M'(PPh(3))][pts] ([5][pts], M' = Pd; [6][pts], M' = Pt); [(eta(5)-Cp')(3)Mo(3)S(4)Ni(AsPh(3))][pts] ([7][pts]). The compounds [5][pts]-[7][pts] are completing the extensive series of clusters [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] (M = Mo, W; M' = Ni, Pd, Pt; E = P, As) which allows the consequences of replacing a single type of atom on structural and NMR and UV/vis spectroscopic as well as electrochemical properties to be determined. Single-crystal X-ray structure determinations of [5][pts]-[7][pts] revealed that [5][pts] was not isomorphous to the other members of the series [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] due to distinctly different cell parameters, which in the molecular structure of [5](+) is reflected in a slightly different orientation of the PPh(3) ligand. Electrochemical measurements on the series showed that the Mo-based clusters were more difficult to oxidize than their W-based analogues. The Pd-containing clusters underwent two-electron oxidation processes, whereas the Ni- and Pt-containing clusters underwent two separated one-electron oxidation processes.  相似文献   

7.
The reactions of the complexes [(dcype)NiH]2, 1, [(dippe)NiH]2, 2, and [(dtbpe)NiH]2, 3, with a mixture of BEt3 and Super-Hydride (LiHBEt3) afforded sigma-borane nickel(0) compounds of the type [(dcype)Ni(sigma-HBEt2)], 4, [(dippe)Ni(sigma-HBEt2)], 5, [(dtbpe)Ni(sigma-HBEt2)], 6, respectively, with the concomitant formation in each case of [(dcype)2Ni2)(H)3][BEt4], 7, [(dippe)2Ni2(H)3][BEt4], 8 and [(dtbpe)2Ni2(H)3][BEt4], 9, respectively. X-ray crystal structures are reported for 4 and 8.The reaction of BEt3 and LiHBEt3 was also reviewed in detail.  相似文献   

8.
Compounds [Sr(dpp-bian)(thf)4] (2), [Ba(dpp-bian)(dme)2.5] (3) and [Mg(dtb-bian)(thf)2] (4) (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene; dtb-bian = 1,2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene) were prepared by reduction of dpp-bian and dtb-bian with an excess of metallic Mg, Sr, or Ba in THF or DME. Reactions of [Mg(dpp-bian)(thf)3], 3, and 4 with diphenylacetonitrile gave keteniminates [Mg(dpp-bianH)(NCCPh2)(thf)2] (5), [Mg(dtb-bianH)(NCCPh2)(thf)2] (6), and [Ba(dpp-bianH)(NCCPh2)(dme)2] (7), respectively. The reaction of 2 with CH3C[triple chemical bond]N in THF gave [{Sr(dpp-bianH)[N(H)C(CH3)C(H)CN](thf)}2] (8). The compounds 2, 3, 5-8 were characterized by elemental analysis, and IR and NMR spectroscopy. Molecular structures of 2, 3, 7, and 8 were determined by single-crystal X-ray diffraction. In contrast to reactions of alkali-metal reagents, magnesium amides, or yttriumalkyls with alpha-H acidic nitriles, which are accompanied by an amine or an alkane elimination, the reactions of [Mg(dpp-bian)(thf)3] (1), 2, 3, and 4 with such nitriles proceeded with formation of Mg, Sr, and Ba keteniminates and simultaneous protonation of one nitrogen atom of the bian ligand. The NMR spectroscopic data obtained for complex 5 indicated that in solution the amino hydrogen atom underwent the fast (on the NMR timescale) shuttle transfer between both nitrogen atoms of the dpp-bianH ligand.  相似文献   

9.
The Pd(II) complex [PdCl(2)(1)] [1 = ({oxazolin-2-yl}methyl)diphenylphosphine] was obtained by the 1:1 reaction of 1 with [PdCl(2)(NCPh)(2)]. Although this neutral complex is stable in the solid-state and in solution, it reacts with the dinuclear complex [CoCl(2)(μ-1)](2) to afford the heterometallic zwitterionic complex [{PdCl(1)}(+)(μ-1)(CoCl(3))(-)] (2). Under inert atmosphere, two equivalents of 1 reacted with [NiCl(2)(dme)] to give trans-[NiCl(2)(1)(2)] (3) in CH(2)Cl(2) but cis-[NiCl(2)(1)(2)] (4) in CHCl(3). When the latter reaction was performed in air, trans-[NiCl(2)(5)(2)] (6) [5 = ({oxazolin-2-yl}methyl)diphenylphosphine oxide] was obtained. All metal complexes, 2, 3, 4 and 6, have been structurally characterized by X-ray diffraction. Complexes 3, 4 and 6 have been evaluated as precatalysts for ethylene oligomerisation in the presence of AlEtCl(2) as cocatalyst. Complexes 3 and 6 yielded a turnover frequency (TOF) of 60,700 and 62,600 mol of C(2)H(4)/((mol of Ni)·h), respectively, in the presence of 10 equiv. of AlEtCl(2). In the presence of only 6 equiv. of cocatalyst, these Ni complexes yielded TOF values of 41,500 and 58,000 mol of C(2)H(4)/((mol of Ni)·h), respectively.  相似文献   

10.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

11.
Palladium and platinum complexes with the model nucleobase 1-methylcytosine (1-Mecyt) of the types [Pd(N-N)(C6F5)(1-Mecyt)]ClO4 [N-N = bis(3,5-dimethylpyrazol-1-yl)methane (bpzm), bis(pyrazol-1-yl)methane (bpzm), N,N,N',N'-tetramethylethylenediamine (tmeda), or 2,2'-bipyridine (bpy)] and [M(dmba)(L')(1-Mecyt)]ClO4 [dmba = N,C-chelating 2-(dimethylaminomethyl)phenyl; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium and platinum complexes of the types cis-[M(C6F5)2(1-Mecyt)2] (M = Pd or Pt) and cis-[Pd(L')(C6F5)(1-Mecyt)2]ClO4 (L' = PPh(3) or t-BuNC) have also been prepared. The crystal structures of [Pd(bpzm)(C6F5)(1-Mecyt)]ClO4, [Pt(dmba)(DMSO)(1-Mecyt)]ClO4, cis-[Pd(C6F5)2(1-Mecyt)2], and cis-[Pd(t-BuNC)(C6F5)(1-Mecyt)2]ClO4 have been established by X-ray diffraction. There is extensive hydrogen bonding (N-H...O, C-H...F or C-H...O) in all the compounds. There are also intermolecular pi-pi interactions between pyrimidine rings of adjacent chains in [Pd(C6F5)2(1-Mecyt)2]. DNA adduct formation of the new complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the complexes on plasmid DNA pBR322 were also obtained. Values of IC(50) were also calculated for the new complexes against the tumor cell line HL-60. At a short incubation time (24 h) almost all new complexes were more active than cisplatin.  相似文献   

12.
Cyclometallated palladium(II) azido complexes containing C,N,N- or C,N-donor ligands, [Pd(N(3))L](HL = 6-phenyl-2,2'-bipyridine or 2-phenylpyridyl derivatives), showed different reactivities toward organic isocyanides and isothiocyanates. In particular, aryl isocyanides (CN-Ar) underwent insertion into the orthometallated Pd-C bond on the phenyl moiety of the supporting ligand (L) in [Pd(N(3))L] or [Pd(N(3))(PR(3))L] to selectively give carbodiimido [[Pd(N=C=N-Ar)L]], imidoyl [[Pd(N(3))(-C=N-Ar)(PR(3))L]], or imidoyl carbodiimido complexes [[Pd(N=C=N-Ar)(-C=N-Ar)L] or [Pd(N=C=N-Ar)(-C=N-Ar)(PR(3))L]], depending on reaction conditions. Interestingly, reactions of [Pd(N(3))(PR(3))L] with organic isothiocyanates gave unusual dinuclear complexes [(micro-SCN(4)-R)PdL](2), exhibiting the concurrent S- and N-coordinating thio-tetrazole bridge.  相似文献   

13.
Insertion reactions of the low-valent group 13 bisimidinate ligand Ga(DDP) {DDP = 2-[(2,6-diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]-2-pentene} into Zn-Me and Zn-Cl bonds are reported. The reaction of ZnMe2 with 2 equiv of Ga(DDP) yields the double-insertion product [{(DDP)GaMe}2Zn] (1), whereas the insertion of Ga(DDP) into the Zn-Cl bond of ZnCl2 in tetrahydrofuran (THF) leads to the monoinsertion product [{(DDP)GaCl}ZnCl(THF)2] (2). Treatment of 2 with Na[BArF] results in the salt [{THF.Ga(DDP)}Zn(THF)(mu-Cl)]2[BArF]2 (3), with two Cl atoms bridging the Zn centers. The structural features of the Zn-Ga-bonded compounds 1-3 were compared with related complexes and in particular with the compound [Zn(GaCp*)4][BArF]2 (4), which was synthesized by the reaction of ZnMe2, [H(OEt2)2][BArF], and GaCp* in fluorobenzene. The complex cation [Zn(GaCp*)4]2+ of 4 relates to previously reported d10 analogues [M(GaCp*)4] (M = Ni, Pd, Pt). All new compounds were fully characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction analysis.  相似文献   

14.
Negishi cross-coupling reaction of organozinc compounds as nucleophiles with aryl halides has drawn immense focus for C−C bond formation reactions. In comparison to the well-established library of Pd complexes, the C−C cross-coupling of this particular approach is largely primitive with nickel-complexes. Herein, we describe the syntheses of Ni(II) complexes, [(MeBICAAC)2NiX2] (X=Cl ( 1 ), Br ( 2 ), and I ( 3 )) by employing the bicyclic (alkyl)(amino)carbene (MeBICAAC) ligand. The reduction of complexes 1 – 3 using KC8 afforded the two coordinate low valent, Ni(0) complex, [(MeBICAAC)2Ni(0)] ( 4 ). Complexes 1 – 4 have been characterized by spectroscopic techniques and their solid-state structures were also confirmed by X-ray crystallography. Furthermore, complexes 1 – 4 have been applied in a direct and convenient method to catalyze the Negishi cross-coupling reaction of various aryl halides with 2,6-difluorophenylzinc bromide or phenylzinc bromide as the coupling partner in the presence of 3 mol % catalyst. Comparatively, among all-pristine complexes, 1 exhibit high catalytic potential to afford value-added C−C coupled products without the use of any additive. The UV-vis studies and HRMS measurements of controlled stochiometric reactions vindicate the involvement of Ni(I)−NI(III) cycle featured with a penta-coordinated Ni(III)-aryl species as the key intermediate for 1 whereas Ni(0)/Ni(II) species are potentially involved in the catalytic cycle of 4 .  相似文献   

15.
The reaction of [[O(SiMe2Ap)2)2LnLi(thf)n] 1 (Ln = Nd, n= 2) and 2 (Ln = La, n = 3) in hexane with [(dme)NiCl2] (dme = dimethoxyethane) and [(cod)PtCl2] (cod = 1,5-cyclooctadiene) leads to the dimeric Ni complex [[O(SiMe2Ap)2]2Ni2] (3) and the mononuclear platinum compound [O(SiMe2Ap)2Pt] (4). respectively (O(SiMe2ApH)2 = bis(4-methyl-2-pyridylamino)tetramethyldisiloxane). Compounds 3 and 4 have been characterized by X-ray crystal structure analysis. The ligand-transfer reactions probably proceed via heterobimetallic intermediates. A model complex of such an intermediate [[O(SiMe2Ap)2)2NdPdMe] (7) was isolated by reacting 1 with [(cod)PdMeCl]. Applications of complex 3 in ethylene oligomerization were investigated. Highly branched oligomers with a very narrow molecular weight distribution (Mn =230 gmol(-1) (relative to polystyrene standards), Mw/M= 1.14) are produced when Et3Al2Cl3 is employed as a co-catalyst and CH2Cl2 as the solvent (TOF = 122000 h(-1). Treatment of one equivalent of 1 or 2 with two equivalents of [(cod)CuCl] results in the formation of the polycyclic tetranuclear complex [[O(SiMe2Ap)2]2Cu4] (8). An X-ray crystal structure analysis of 8 shows channels formed by a series of fourteen-membered rings in the solid state.  相似文献   

16.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

17.
The synthesis and structural characterization of the novel homoleptic cluster complexes [Pd2(GaCp*)2(mu2-GaCp*)3] (1c), [Pd3(GaCp*)4(mu2-GaCp*)4] (2b) and [Pd3(AlCp*)2(mu2-AlCp*)2(mu3-AlCp*)2] (3) (Cp*=C5Me5) are presented. Furthermore, ligand exchange reactions of these cluster complexes are explored. In contrast to the electronically and sterically saturated complexes [M(ECp*)4] (M=Ni, Pd, Pt), the new unsaturated analogues [M(a)(ER)b] (E=Al, Ga, In) react with a variety of typical ligands (Cp*Al, CO, phosphines, isonitriles) to give new di- and tri-substituted compounds like [Pt2(GaCp*)2(mu2-AlCp*)3] (1d), [PdPt(GaCp*)(PPh3)(mu2-GaCp*)3] (4b), or [Pd3(PPh3)3(mu2-InCp*)(mu3-InCp*)2] (8). The trends of the reactivity of [M(a)(ER)b] as well as their fluxional behavior in solution has been elucidated by NMR spectroscopy, resulting in a mechanistic rationale for the ligand exchange reactions as well as the fluxional processes.  相似文献   

18.
The synthesis of novel 1,3-diaryl- and 1,3-dialkylpyrimidin-2-ylidene-based N-heterocyclic carbenes (NHCs) and their rhodium(i) and palladium(II) complexes is described. The rhodium compounds bromo(cod)[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (7), bromo(cod)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (8) (cod=eta(4)-1,5-cyclooctadiene, mesityl=2,4,6-trimethylphenyl), chloro(cod)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (9), and chloro(cod)[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (10) were prepared by reaction of [[Rh(cod)Cl](2)] with lithium tert-butoxide followed by addition of 1,3-dimesityl-3,4,5,6-tetrahydropyrimidinium bromide (3), 1,3-dimesityl-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate (4), 1,3-di-2-propyl-3,4,5,6-tetrahydropyrimidinium bromide (6), and 1,3-di-2-propyl-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate, respectively. Complex 7 crystallizes in the monoclinic space group P2(1)/n, and 8 in the monoclinic space group P2(1). Complexes 9 and 10 were used for the synthesis of the corresponding dicarbonyl complexes dicarbonylchloro(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (11), and dicarbonylchloro[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (12). The wavenumbers nu(CO I)/nu(CO II) for 11 and 12 were used as a quantitative measure for the basicity of the NHC ligand. The values of 2062/1976 and 2063/1982 cm(-1), respectively, indicate that the new NHCs are among the most basic cyclic ligands reported so far. Compounds 3 and 6 were additionally converted to the corresponding cationic silver(i) bis-NHC complexes [Ag(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2)]AgBr(2) (13) and [Ag[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene](2)]AgBr(2) (14), which were subsequently used in transmetalation reactions for the synthesis of the corresponding palladium(II) complexes Pd(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2) (2+)(Ag(2)Br(2)Cl(4) (4-))(1/2) (15) and Pd[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2)]Cl(2) (16). Complex 15 crystallizes in the monoclinic space group P2(1)/c, and 16 in the monoclinic space group C(2)/c. The catalytic activity of 15 and 16 in Heck-type reactions was studied in detail. Both compounds are highly active in the coupling of aliphatic and aromatic vinyl compounds with aryl bromides and chlorides with turnover numbers (TONs) up to 2000000. Stabilities of 15 and 16 under Heck-couplings conditions were correlated with their molecular structure. Finally, selected kinetic data for these couplings are presented.  相似文献   

19.
The reactions of Pd(II) ions with starburst ligands 1,3,5-tris(di-2-pyridylamino)benzene (tdab) and 2,4,6-tris(di-2-pyridylamino)-1,3,5-triazene (tdat) have been investigated. Complexes with the Pd:tdab (or tdat) ratio being 1:1 and 3:1 have been isolated and characterized. The structures of five new Pd(II) complexes containing the starburst ligands have been determined by X-ray diffraction analyses, which include chelate compounds [PdCl(2)(tdab)], 1, [(PdCl(2))(3)(tdab)], 2, [(Pd(OAc)(2))(3)(tdab)], 4, and [(Pd(OAc)(2))(3)(tdat)], 5, and a cyclometalated compound [Pd(OAc)(NCN-tdab)], 3. The Pd(II) ion in the 1:1 compound 1 is chelated by two pyridyl groups. Similarly, each Pd(II) center in the 3:1 compounds 2, 4, and 5 is chelated by two pyridyl groups. However, these three compounds display distinct structural features: 2 adopts a "bowl-shaped" structure, 4 has a "pinwheel"-like structure, and 5 has a "up-and-down" structure. Compounds 4 and 5 were examined in solution by variable-temperature (1)H NMR, which revealed that both compounds retain the "pinwheel" and the "up-and-down" structure, respectively. The observed structural preference by 4 and 5 is attributed to both electronic and steric factors.  相似文献   

20.
Various products of the reaction of [E(ddp)] (ddp=2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}-2-pentene; E=Al, Ga) with Pt(0) and Pd(0) olefin complexes are reported. Thus, the reaction of [Pt(cod)(2)] (cod=1,5-cyclooctadiene) with two equivalents of [Ga(ddp)] yields [Pt(1,3-cod){Ga(ddp)}(2)] (1), whereas treatment of [Pd(2)(dvds)(3)] (dvds=1,1,3,3-tetramethyl1,3-divinyldisiloxane) with [E(ddp)] leads to the monomeric compounds [(dvds)Pd{E(ddp)}] (E=Ga (2 a), Al (2 b)) by substitution of the bridging dvds ligand. Both 1 and 2 a readily react with strong pi-acceptor ligands such as CO or tBuNC to give the dimeric compounds [M{mu(2)-Ga(ddp)}(L)] (L=CO, tBuNC; M=Pt (3 a, 5 a), Pd (3 b, 5 b)), respectively. Based on (1)H NMR spectroscopic data, [Pt{Ga(ddp)}(2)(CO)] is likely to be an intermediate in the formation of 3 a. Furthermore, reactions of 1 with H(2) and HSiEt(3) yield the monomeric compounds [Pt{Ga(ddp)}(2)(H)(2)] (7) and [Pt{Ga(ddp)}(2)(H)(SiEt(3))] (8). Finally, the reaction of [Pt(cod)(2)] with one equivalent of [Ga(ddp)] in the presence of H(2) in hexane gives the new dimeric cluster [Pt{mu(2)-Ga(ddp)}(H)(2)](2) (9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号