首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Rotational energy levels of nearly spherical molecules in an isolated vibrational state are studied. It is shown that, in the limit of high rotational quantum number J, the rotational states may be interpreted as those of a stable rotation around axes properly oriented in the molecular frame. The orientation of the axes depends on J. Simple analytical solutions are given for the problem considered in the asymptotic and harmonic approximations. The results obtained possess a clear quantitative interpretation of the phenomena considered and, at the same time, agree quantitatively with the results of numerical diagonalization. The analogy between the effects of rearrangement of the rotational levels under the variation of J and the critical phenomena in macroscopic systems is discussed. The intensities of rovibrational transitions between totally symmetric vibrational states are calculated. A new selection rule is introduced which is due to a overlap of the rotational functions corresponding to the rotation around differently oriented axes.  相似文献   

2.
We report here an ab initio investigation of the cluster effect (i.e., the formation of four-member groups of nearly degenerate rotation-vibration energy levels at higher J and Ka values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD (T) method where the (1s-4f) core electrons of the Te atom were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10 000 cm−1 above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2 130Te and its deuterated isotopomers have been calculated with the MORBID (Morse oscillator rigid bender internal dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J40 in the vibrational ground state, the ν2 state, the “first triad” (the ν13/2 ν2 interacting vibrational states), and the “second triad” (the (ν1 + ν2)/(ν2 + ν3)/3 ν2 states) of H2130Te. We have also investigated the cluster formation in the vibrational ground state of H2 130Te by first fitting the rotational data available from experiment with a modified Watson-type effective Hamiltonian and then using the optimized ground state constants to extrapolate the rotational structure to higher J values. Both the ab initio calculation and the prediction with the effective Hamiltonian show that the cluster formation in H2Te is very similar to that in H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.  相似文献   

3.
在230nm激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X~1∑_g~+,v=0,J=42-69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J=56-69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D)+CO的单重态和S(~3P_J)+CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X~1A')分子吸收一个光子激发到弯曲的A~1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C-S键断裂过程中与2~3A"(c~3A")态强烈耦合并沿后者势能面绝热解离。  相似文献   

4.
The effect of the potential energy surface on the K + HF → KF + H cross section has been studied using reasonable Sorbie-Murrell (bent saddle point) and LEPS (collinear saddle point) potential energy surfaces (PESs). Trajectory calculations for selected initial conditions (translational energies, rovibrational levels (v, J) of HF, as well as initial parallel or perpendicular alignments between the HF rotational angular momentum and the reactants relative velocity vectors) have been performed on these PESs to compare them with experiments. The Sorbie-Murrell and LEPS-4 PESs lead to steric effect ratio results quite close to the experimental ones, once the error margins are included. The resllts point towards a bent K-F-H saddle point although the PES is very isotropic. This could explain why experimental determinations lead to suggest a collinear saddle point. The K + HF → KF + H reaction exhibits an enormous vibrational enhancement of reactivity with one quantum HF vibrational excitation, even at translational energies well above the HF(v=0) threshold, where tunnelling effect contribution to reactivity can be neglected. This behaviour has not been reproduced in the trajectory calculations and no satisfactory explanation has been obtained for this fact. Nevertheless, the HF(v=1)/HF(v=0) cross section ratio at translational energies not far from the HF(v=0) threshold and the relative cross section for HF(v=0) have been satisfactorily descibed. In what regards rotation, the best theoretical results are those corresponding to the Sorbie-Murrell PES (the cross section increases with J), although important differences with experiment appear for the J = 0–3 interval at the lower translational energy values considered (0.54 and 0.77 eV).  相似文献   

5.
Translationally cold caesium molecules are created by photoassociation below the 6s + 6p(1/2) excited state and selectively detected by resonance enhanced two photon ionization (RE2PI). A series of excited vibrational levels belonging to the 0(-)(g) symmetry is identified. The regular progression of the vibrational spacings and of the rotational constants of the 0(-)(g) (6s + 6p(1/2)) levels is strongly altered in two energy domains. These deviations are interpreted in terms of resonant coupling with deeply bound energy levels of two upper 0(-)(g) states dissociating into the 6s + 6p(3/2) and 6s + 5d(3/2) asymptotes. A theoretical model is proposed to explain the coupling and a quantum defect analysis of the perturbed level position is performed. Moreover, the resonant coupling changes dramatically the spontaneous decay products of the photoexcited molecules, strongly enhancing the decay into deeply bound levels of the a(3)Σ(+)(u) triplet state and of the X(1)Σ(+)(g) ground state. These results may be relevant when conceiving population transferring schemes in cold molecule systems.  相似文献   

6.
Ab initio calculations are presented for H2 and D2 relative Raman intensities originating from common rotational levels for both vibrational-rotational and pure rotational transitions. Factors f(J) required to correct measured intensities for molecular non-rigidity (e.g. in temperature measurements) are tabulated. The calculations are compared with literature perturbation-theory equations (significant differences at large J in vibration-rotation) and with experiment.  相似文献   

7.
Molecular vibration and rotation play a significant role in the intramolecular photoexcitation dynamics of the so-called intermediate-case molecule, and the fluorescence intensity, decay and polarization of s-triazine vapor are shown to depend on the excited rovibronic level of the S1 state. Fluorescence characteristics are interpreted by assuming three zero-order states: (1) a zero-order singlet state that carries the absorption intensity and emits fluorescence with sharp structure; (2) zero-order singlet states that do not carry the absorption intensity but emit broad fluorescence; and (3) zero-order triplet states. The interaction among these states depends not only on the vibrational level but also on the rotational level excited. It is suggested that the number of triplet states coupled to the singlet state increases with increasing excess vibrational energy. It is also suggested that K-scrambling occurs both in the triplet manifold following intersystem crossing (ISC) and in the singlet manifold following intramolecular vibrational energy redistribution (IVR). The fluorescence intensity and decay of s-triazine vapor are significantly influenced by a magnetic field, and the field effects are interpreted in terms of the spin decoupling in the triplet manifold following ISC; the role of external magnetic fields is to mix the spin sublevels of different rovibronic levels coupled to the excited singlet state. Magnetic depolarization of fluorescence also occurs because of the efficient interaction between the excited singlet state and the triplet state.  相似文献   

8.
Three-dimensional quantum mechanical calculations for vibrational predissociation of HeI2(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approxima tion.The total and partial decay widths,lifetimes,rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels.Our calculations show that the calculated tota decay widths,lifetimes and rates agree well with those extrapolated from experimental data available The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior.The very short propagation time (less.than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state inter-action between the fragments on the vibrationally deexcited adiabatic potential surface.The final state interaction between the fragments is shown to play an important role in determining the final rotational distri  相似文献   

9.
Three-dimensional quantum mechanical calculations for vibrational predissociation of He12(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approximation. The total and partial decay widths, lifetimes, rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels. Our calculations show that the calculated total decay widths, lifetimes and rates agree well with those extrapolated from experimental data available. The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior. The very short propagation time (less than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state interaction between the fragments on the vibrationally deexcited adiabatic potential surface. The final state interaction between the fragments is shown to play an important role in determining the final rotational distribution. This interpretation clearly explains the dynamical effect that the final rotational distribution shifts to the lower rotational energy levels as the initial vibrational quantum numberu increases.  相似文献   

10.
We present rotational term values for J < or = 3 of the vibrational states with up to twofold excitation of H2D+ in the lowest electronic triplet state (a3sigma(u)+). The calculations were performed using the method of hyperspherical harmonics and our recent accurate double many-body expansion potential energy surface.  相似文献   

11.
We have observed a dual fluorescence decay from the lowest n → π* excited singlet state of pyrimidine. The vibronic states 0-0, 6a1, 121, 6a1121, 122 and 6a1122 have two exponential decays with lifetimes ranging from 2.7-0.7 nsec and from 410-234 ns at 0.02 torr. The ratio of pre-exponentials is pressure independent but the long decay is very sensitive to collisions. The four lower energy states have effective impact diameters of 16 A and the highest energy state is quenched by gas kinetic collision diameters (≈ 5.5 Å). The dual fluorescence decay and collisional fluorescence quenching by rotational relaxation is consistent with the available models of singlet-triplet mixed state decay. Using these models we have computed the rates for singlet-triplet crossing, the number of coupled triplet levels, and the decay rates for internal conversion. The model used our measured fluorescence decay parameters and our estimate of a triplet loss rate. The estimated triplet loss varies from 0.2 to 2.0 × 106 s?1 and the singlet internal conversion rate varies from ≈ 0.4 to 56 × 107 s?1. The singlet-triplet radiationless rate suggests that 50–100 times more triplet levels are effective in the state mixing than can be expected from the triplet vibronic density. Such an enhanced coupling of ro-vibronic triplet levels is 5–10 times larger than previously observed for the dicarbonyls. The observation of reduced collisional quenching of higher energy vibronic levels is quantitatively interpreted by a different model than used previously for the dicarbonyls.  相似文献   

12.
The dynamics of photodissociation of glyoxal (HOC-COH) near the dissociation threshold on the triplet manifold are studied through measurement of distributions of nascent fragment HCO in various internal states. Three rotational levels 1(01) (*), 4(13) (*), and 3(21) (*)+3(22) (*) of vibrational state U (excitation wavelength approximately 394.4 nm, origin at 25,331.865 cm(-1)) of glyoxal in state A (1)A(u) and two other vibrational states at excitation wavelengths 390.33 and 382.65 nm are selected to produce fragment HCO. By means of fluorescence in the transition B (2)A(')-X (2)A(') of HCO, we determined the relative populations of internal states of that fragment. Rotational states of product HCO up to N=26 and K=2 are populated, and bimodal distributions of these rotational states are observed for the photolysis wavelengths used in this work. The high rotational part of the distribution with average energy near values calculated on the basis of the statistical model-phase-space theory is assigned to arise from glyoxal on its S(0) surface, and the low rotational part from the T(1) surface with an exit barrier. After photolysis near the threshold region on the triplet surface, HCO arising from the T(1) state appears to be a major component of products because these rotational levels 1(01) (*), 4(13) (*), and 3(2) (*) of U state selected are gateway states with an enhanced rate of intersystem crossing.  相似文献   

13.
The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1 3A2(n,pi*) state of jet-cooled thiophosgene have been investigated by two-color S2<--T1<--S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2-->S0 fluorescence generated by S2<--T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the 3A2(n,pi*) state than in the corresponding 1A2(n,pi*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1<--S0 excitation spectrum. The nearly degenerate mid R:x and mid R:y spin states are well removed from mid R:z spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the mid R:z spin state of T1 thiophosgene, obtained from time-resolved S2<--T1<--S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.  相似文献   

14.
The time-dependent golden wave packet method has been used for calculating the decay widths of vibrational predissociation for HeICl complex in the B state with total angular momentum J=0. This is a good example of intramolecular energy transfer. We examine the dependence of the final rotational distribution (partial decay width) of ICl fragment on the stretching excitation. It is found that computed final rotational distributions are weakly dependent on the vibrational level being excited. Unlike the smoothly varying rotational distribution for lower initial vibrational levels, for higher initial vibrational levels the rotational distribution indicates the very pronounced oscillatory structure. The analysis of the rotational distribution as a function of propagation time reveals the predominant role of the final states interaction in determining the final rotational distribution.  相似文献   

15.
We have combined the high sensitivity of the ICLAS technique with the rotational cooling effect of a slit jet expansion in order to observe and to understand the visible and near infrared NO2 spectrum. By this way, an equivalent absorption pathlength of several kilometers through rotationally cooled molecules has been achieved. Due to the vibronic interaction between the two lowest electronic states, 2A1 and à 2B2, this spectrum is vibronically dense and complex. Moreover, the dense room temperature rotational structure is perturbed by additional rovibronic interactions. In contrast, the rotational analysis of our jet cooled spectrum is straightforward. The NO2 absorption spectrum is vanishing to the IR but, owing to the high sensitivity of the ICLAS technique, we have been able to record the NO2 spectrum down to 11200 cm−1 with a new Ti:sapphire ICLAS spectrometer. As a result 249 2B2 vibronic bands have been observed (175 cold bands and 74 hot bands) in the 11200–16150 cm−1 energy range. Due to the cooling effect of the slit jet we have reduced the rotational temperature down to about 12 K and at this temperature the K = 0 subbands are dominant. Consequently, we have analysed only the K = 0 manifold for N 7 of each vibronic band. The dynamical range of the band intensities is about one thousand. Due to the strong vibronic interaction between the 2A1 and à 2B2 electronic states, we observed not only the a1 vibrational levels of the à 2B2 state but also the b2 vibrational levels of the 2A1 state interacting with the previous ones. By comparison with the calculated density of states, we conclude that we have observed about 65% of the total number of 2B2 vibronic levels located in the studied range. However, there are more missing levels in the IR because of the weakness of the spectrum in this range. The correlation properties of this set of vibronic levels have been analysed calculating the power spectrum of the absorption stick spectrum which displays periodic motions: the dominant period, at 714 ± 20 cm−1, corresponds to the bending motion of the à 2B2 state. The other observed periods remain unassigned. In contrast the next neighbor spacing distribution (NNSD) shows a strong level repulsion, i.e. a manifestation of quantum chaos. These two observations, apparently contradictory, can be rationalized as follows: the short time dynamics, for t < 10−12 s, is “regular” while for longer times the dynamics becomes “chaotic”. We suggest that this behavior may be observed directly with a pump and probe fs laser experiment.  相似文献   

16.
The S(1D)+D2-->SD+D reaction has been studied through a photolysis-probe experiment in a cell. S(1D) reagent was prepared by 193 nm photolysis of CS2, and the SD(X 2Pi) product was detected by laser fluorescence excitation. The nascent rotational/fine-structure state distribution of the SD(X 2Pi) product was determined. This reaction, previously studied theoretically and in a crossed molecular beam experiment, is known to proceed through formation and decay of a long-lived collision complex involving the deep well in the H2S ground electronic state. The determined SD rotational state distribution in the v=0 vibrational level was found to be approximately statistical, with a small preference for formation of the F1 (Omega=3/2) fine-structure manifold over F2 (Omega=1/2). The branching into the Lambda doublet levels was also investigated, and essentially equal populations of levels of A' and A" symmetry were found. The present results are compared with previous investigations of this reaction and the analogous O(1D)+D2 reaction.  相似文献   

17.
In this paper, we report quantitative product state distributions for the photolysis of H2CO --> H + HCO in the triplet threshold region, specifically for several rotational states in the 2(2)4(3) and 2(3)4(1) H2CO vibrational states that lie in this region. We have combined the strengths of two complementary techniques, laser-induced fluorescence for fine resolution and H atom Rydberg tagging for the overall distribution, to quantify the upsilon, N, and Ka distributions of the HCO photofragment formed via the singlet and triplet dissociation mechanisms. Both techniques are in quantitative agreement where they overlap and provide calibration or benchmarks that permit extension of the results beyond that possible by each technique on its own. In general agreement with previous studies, broad N and Ka distributions are attributed to reaction on the S0 surface, while narrower distributions are associated with reaction on T1. The broad N and Ka distributions are modeled well by phase space theory. The narrower N and Ka distributions are in good agreement with previous quasi-classical trajectory calculations on the T1 surface. The two techniques are combined to provide quantitative vibrational populations for each initial H2CO vibrational state. For dissociation via the 2(3)4(1) state, the average product vibrational energy (15% of E(avail)) was found to be about half of the rotational energy (30% of E(avail)), independent of the initial H2CO rotational state, irrespective of the singlet or triplet mechanism. For dissociation via the 2(2)4(3) state, the rotational excitation remained about 30% of E(avail), but the vibrational excitation was reduced.  相似文献   

18.
We have observed fully rotationally resolved transitions of the photoelectron vibrational bands 2(4), 2(5), 1(1)2(1), and 1(1)2(3) for ammonia cation (NH3+) by two-color infrared (IR)-vacuum ultraviolet (VUV)- pulsed field-ionization photoelectron (PFI-PE) measurements. By preparing an intermediate rovibrational state of neutral NH(3) with a known parity by IR excitation followed by VUV-PFI-PE measurements, we show that the photoelectron parity can be determined unambiguously. The IR-VUV-PFI-PE measurement of the 2(4) band clearly reveals the formation of both even and odd l states for the photoelectrons, where l is the orbital angular momentum quantum number. This observation is consistent with the conclusion that the lack of inversion symmetry for NH3 and NH3+ allows odd/even l mixings, rendering the production of both odd and even l states for the photoelectrons. Evidence is also found, indicating that the photoionization transitions with DeltaK=0 are strongly favored compared to that with DeltaK=3. For the 2(5), 1(1)2(1), and 1(1)2(3) bands, only DeltaK=0 transitions for the production of even l photoelectron states from the J'K'=2(0) rotational level of NH3(nu1=1) are observed. The preferential formation of even l photoelectron states for these vibrational bands is attributed to the fact that the DeltaK=0 transitions for the formation of odd l photoelectron states from the 2(0) rotational level of NH3(nu1=1) are suppressed by the constraint of nuclear-spin statistics. In addition to information obtained on the photoionization dynamics of NH3, this experiment also provides a more precise value of 3232+/-10 cm-1 for the nu1+ (N-H stretch) vibrational frequency of NH3+.  相似文献   

19.
20.
High resolution vibration-rotation spectra of 13C2H2 were recorded in a number of regions from 2000 to 5200 cm−1 at Doppler or pressure limited resolution. In these spectral ranges cold and hot bands involving the bending-stretching combination levels have been analyzed up to high J values. Anharmonic quartic resonances for the combination levels ν1 + mν4 + nν5, ν2 + mν4 + (n + 2) ν5 and ν3 + (m − 1) ν4 + (n + 1) ν5 have been studied, and the l-type resonances within each polyad have been explicitly taken into account in the analysis of the data. The least-squares refinement provides deperturbed values for band origins and rotational constants, obtained by fitting rotation lines only up to J ≈ 20 with root mean square errors of ≈ 0.0003 cm−1. The band origins allowed us to determine a number of the anharmonicity constants xij0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号