首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mixed convection boundary-layer flow on one face of a semi-infinite vertical surface embedded in a fluid-saturated porous medium is considered when the other face is taken to be in contact with a hot or cooled fluid maintaining that surface at a constant temperature $T_\mathrm{{f}}$ . The governing system of partial differential equations is transformed into a system of ordinary differential equations through an appropriate similarity transformation. These equations are solved numerically in terms of a dimensionless mixed convection parameter $\epsilon $ and a surface heat transfer parameter $\gamma $ . The results indicate that dual solutions exist for opposing flow, $\epsilon <0$ , with the dependence of the critical values $\epsilon _\mathrm{{c}}$ on $\gamma $ being determined, whereas for the assisting flow $\epsilon >0$ , the solution is unique. Limiting asymptotic forms for both $\gamma $ small and large and $\epsilon $ large are also discussed.  相似文献   

2.
In a previous paper (Dehghanpour et al., Phys Rev E 83:065302, 2011a), we showed that relative permeability of mobilized oil, $k_\mathrm{ro}$ , measured during tertiary gravity drainage, is significantly higher than that of the same oil saturation in other tests where oil is initially a continuous phase. We also showed that tertiary $k_\mathrm{ro}$ strongly correlates to both water saturation, $S_\mathrm{w}$ , water flux (water relative permeability), $k_\mathrm{rw}$ , and the change in water saturation with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . To develop a model and understanding of the enhanced oil transport, identifying which of these parameters ( $S_\mathrm{w},\,k_{\mathrm{rw}}$ , or $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ ) plays the controlling role is necessary, but in the previous experiments these could not be deconvolved. To answer the remaining question, we conduct specific three-phase displacement experiments in which $k_{\mathrm{rw}}$ is controlled by applying a fixed water influx, and $S_\mathrm{w}$ develops naturally. We obtain $k_{\mathrm{ro}}$ by using the saturation data measured in time and space. The results suggest that steady-state water influx, in contrast to transient water displacement, does not enhance $k_{\mathrm{ro}}$ . Instead, reducing water influx rate results in excess oil flow. Furthermore, according to our pore scale hydraulic conductivity calculations, viscous coupling and fluid positioning do not sufficiently explain the observed correlation between $k_{\mathrm{ro}}$ and $S_{\mathrm{w}}$ . We conclude that tertiary $k_{\mathrm{ro}}$ is controlled by the oil mobilization rate, which in turn is linked to the rate of water saturation decrease with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . Finally, we develop a simple model which relates tertiary $k_{\mathrm{ro}}$ to transient two-phase gas/water relative permeability.  相似文献   

3.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   

4.
5.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

6.
The prepared microporous hydrotalcite (HT)–silica membrane was found to exhibit the molecular sieving characteristic of pristine silica material and high $\mathrm{CO}_{2}$ adsorption capacity of HT. The combined properties made enhanced $\mathrm{CO}_{2}$ permeability and separability from $\mathrm{CH}_{4}$ possible. The gas transport in the membrane was predominantly surface adsorption. The porous membrane overcame the Knudsen limitation and yielded the highest separation selectivity of 120 at 40 % $\mathrm{CO}_{2}$ feed concentration, $30\,^{\circ }\mathrm{C}$ operating temperature, and 100 kPa pressure difference.  相似文献   

7.
The presence of impermeable barriers in a reservoir can significantly impede the buoyant migration of $\mathrm{CO}_2$ injected deep into a heterogeneous geological formation. An important consequence of the presence of these impermeable barriers in terms of the long-term storage of $\mathrm{CO}_2$ is the residual trapping that takes place beneath the barriers, which acts to both increase the storage potential of the reservoir and improve the storage security of the $\mathrm{CO}_2$ . Analytical results for the total amount of $\mathrm{CO}_2$ trapped in a reservoir with an uncorrelated random distribution of impermeable barriers are obtained for both two and three-dimensional cases. In two dimensions, it is shown that the total amount of $\mathrm{CO}_2$ contained in this fashion scales as $n^{5/4}$ , where $n$ is the number of barriers in the vertical direction. In three dimensions, the trapped amount scales as $n^c$ , where $5/4 \le c \le 2$ depending on the aspect ratio of the barriers. The analytical two-dimensional results are compared with results of detailed numerical simulations, and good agreement is observed.  相似文献   

8.
The influence of $\text{ CF }_{3}\text{ H }$ and $\text{ CCl }_{4}$ admixtures (known as detonation suppressors for combustible mixtures) on the development of acetylene detonation was experimentally investigated in a shock tube. The time-resolved images of detonation wave development and propagation were registered using a high-speed streak camera. Shock wave velocity and pressure profiles were measured by five calibrated piezoelectric gauges and the formation of condensed particles was detected by laser light extinction. The induction time of detonation development was determined as the moment of a pressure rise at the end plate of the shock tube. It was shown that $\text{ CF }_{3}\text{ H }$ additive had no influence on the induction time. For $\text{ CCl }_{4}$ , a significant promoting effect was observed. A simplified kinetic model was suggested and characteristic rates of diacetylene $\text{ C }_{4}\text{ H }_{2}$ formation were estimated as the limiting stage of acetylene polymerisation. An analysis of the obtained data indicated that the promoting species is atomic chlorine formed by $\text{ CCl }_{4}$ pyrolysis, which interacts with acetylene and produces $\text{ C }_{2}\text{ H }$ radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modelling agree well with the experimental data.  相似文献   

9.
Strong shock and detonation waves in inert and chemically active bubble media, which are generated by a wire explosion initiated by a capacitor with a stored energy $W_0 =12.3$ –1,600 J, is experimentally studied. The measurements are performed near the wire and far from the wire in a vertical shock tube 4.5 m long with a volume fraction of the gas in the medium $\beta _0 =1$ –4 %. It is shown that in inert bubble medium, a short intensely decaying shock wave (SW) with intense pressure oscillations is formed in the vicinity of wire explosion point; near the explosion point at $\beta _0 \le 2$  % the SW propagates with the velocity of sound in a liquid. In chemically active bubble medium, an unsteady detonation wave generated by a wire explosion is formed. The pressure amplitude and the velocity of this wave are greater and the length is smaller than those of SW in an inert bubble medium in the same range of explosion energy. It is found that in the interval of low energy explosion from ${\sim }12$ to 64 J, the formation of the bubble detonation wave occurs faster than that at high energies ( $3\times 10^{2}$ $10^{3}$  J).  相似文献   

10.
Double-diffusive natural convection in fluid-saturated porous medium inside a vertical enclosure bounded by finite thickness walls with opposing temperature, concentration gradients on vertical walls as well as adiabatic and impermeable horizontal ones has been performed numerically. The Darcy model was used to predict fluid flow inside the porous material, while thermal fields are simulated based on two-energy equations for fluid and solid phases on the basis of a local thermal non-equilibrium model. Computations have been performed for different controlling parameters such as the buoyancy ratio $N$ , the Lewis number Le, the anisotropic permeability ratio $R_\mathrm{p}$ , the fluid-to-solid thermal conductivity ratio $R_\mathrm{c}$ , the interphase heat transfer coefficient $\mathcal{H}$ , the ratio of the wall thickness to its height $D$ , the wall-to-porous medium thermal diffusivity ratio $R_\mathrm{w}$ , and the solid-to-fluid heat capacity ratio $\gamma $ . Thus, the effects of the controlling parameters on heat and mass transfer characteristics are discussed in detail. Moreover, the validity domain of the local thermal equilibrium (LTE) assumption has been delimited for different set of the governing parameters. It has been shown that Le has a noticeable significant effect on fluid temperature profiles and that higher $N$ values lead to a significant enhancement in heat and mass transfer rates. Moreover, for higher $\mathcal{H}, R_\mathrm{c}$ , $R_\mathrm{p}, R_\mathrm{w}$ , or $D$ values and/or lower $\gamma $ values, the solid and fluid phases tend toward LTE.  相似文献   

11.
This paper establishes the global in time existence of classical solutions to the two-dimensional anisotropic Boussinesq equations with vertical dissipation. When only vertical dissipation is present, there is no direct control on the horizontal derivatives and the global regularity problem is very challenging. To solve this problem, we bound the derivatives in terms of the ${L^\infty}$ -norm of the vertical velocity v and prove that ${\|v\|_{L^{r}}}$ with ${2\leqq r < \infty}$ does not grow faster than ${\sqrt{r \log r}}$ at any time as r increases. A delicate interpolation inequality connecting ${\|v\|_{L^\infty}}$ and ${\|v\|_{L^r}}$ then yields the desired global regularity.  相似文献   

12.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

13.
Limestone dissolution by $\hbox {CO}_2$ -rich brine induces critical changes of the pore network geometrical parameters such as the pore size distribution, the connectivity, and the tortuosity which govern the macroscopic transport properties (permeability and dispersivity) that are required to parameterize the models, simulating the injection and the fate of $\hbox {CO}_2$ . A set of four reactive core-flood experiments reproducing underground conditions ( $T = 100\,^{\circ }\hbox {C}$ and $P = 12$ MPa) has been conducted for different $\hbox {CO}_2$ partial pressures $(0.034 < P_{\mathrm{CO}_2}< 3.4\; \hbox {MPa})$ in order to study the different dissolution regimes. X-ray microtomographic images have been used to characterize the changes in the structural properties from pore scale to Darcy scale, while time-resolved pressure loss and chemical fluxes enabled the determination of the sample-scale change in porosity and permeability. The results show the growth of localized dissolution features associated with high permeability increase for the highest $P_{\mathrm{CO}_2}$ , whereas dissolution tends to be more homogeneously distributed for lower values of $P_{\mathrm{CO}_2}$ . For the latter, the higher the $P_{\mathrm{CO}_2}$ , the more the dissolution patterns display ramified structures and permeability increase. For the lowest value of $P_{\mathrm{CO}_2}$ , the preferential dissolution of the calcite cement associated with the low dissolution kinetics triggers the transport that may locally accumulate and form a microporous material that alters permeability and produces an anti-correlated porosity–permeability relationship. The combined analysis of the pore network geometry and the macroscopic measurements shows that $P_{\mathrm{CO}_2}$ regulates the tortuosity change during dissolution. Conversely, the increase of the exponent value of the observed power law permeability–porosity trend while $P_{\mathrm{CO}_2}$ increases, which appears to be strongly linked to the increase of the effective hydraulic diameter, depends on the initial rock structure.  相似文献   

14.
We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

15.
Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX $+$ traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large–scale explosions of intermediate strength $(10\, < \Delta {p}/{p}_0 \lesssim \, 0.02)$ gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be $1.25 \pm 0.94$ J and the average TNT equivalent was found to be $0.3$ . The repeatability in generating these micro-blast waves using the Nonel tube was very good $(\pm 2~\%)$ and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.  相似文献   

16.
The unsteady separation of the compressible flow field behind a diffracting shock wave was investigated along convex curved walls, using shock tube experimentation at large length and time scales, complemented by numerical computation. Tests were conducted at incident shock Mach numbers of $M_{\hbox {s}} =$ 1.5 and 1.6 over a 100 mm radius wall over a dimensionless time range up to $\tau \le $ 6.45. The development of the near wall flow at $M_{\hbox {s}} =$ 1.5 has been described in detail and is very similar to that observed for slightly lower $\tau $ ’s at $M_{\hbox {s}} =$ 1.6. Computations were performed at wall radii of 100 and 200 mm and for incident shock Mach numbers from 1.5 up to and including Mach 2.0. Comparing dimensionless times for different size walls shows that for a given value of $\tau $ the flow field is very similar for the various wall radii published to date and tested in this study. Previously published results that were examined alongside the results from this study had typical values of $1.6 < \tau < 3.2$ . At the later times presented here, flow features were observed that previously had only been observed at higher Mach numbers. The larger length scales allowed for a degree of Reynolds number independence in the results published here. The effect of turbulence on the numerical and experimental results could not be adequately examined due to limitations of the flow imaging system used and a number of questions remain unanswered.  相似文献   

17.
In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

18.
This article deals with self-excited vibrations, attractivity of stationary solutions, and the corresponding bifurcation behavior of two-dimensional differential inclusions of the type $\mathbf{M}\mathbf{q}'' + \mathbf{D}\mathbf{q}' + (\mathbf{K} + \bar{\mu}\mathbf{N})\mathbf{q} \in-\mathbf{R}\operatorname{Sign}(\mathbf{q}')$ . For the smooth case R=0, the equilibrium may become unstable due to non-conservative positional forces stemming from the circulatory matrix N. This type of instability is usually referred to as flutter instability and the loss of stability is related to a Hopf bifurcation of the steady state, which occurs for a critical parameter $\bar{\mu}= \bar{\mu}_{\mathrm{crit}}$ . For R0, the steady state is a set of equilibria, which turns out to be attractive for all values of the bifurcation parameter $\bar{\mu}$ . Depending on $\bar{\mu}$ , the basin of attraction of the equilibrium set can be infinite or finite. The transition from an infinite to a finite basin of attraction occurs at the stability threshold $\bar{\mu}_{\mathrm{crit}}$ of the underlying smooth problem. For the finite basin of attraction, its size is proportional to the Coulomb friction and inverse-proportional to $(\bar{\mu}- \bar{\mu}_{\mathrm{crit}})$ . By adding Coulomb damping the notion of steady state stability for the smooth problem is replaced by the question whether the basin of attraction of the steady state is infinite or finite. Simultaneously, the local Hopf-bifurcation is replaced by a global bifurcation. This implies that in the presence of Coulomb damping the occurrence of self-excited vibrations can only be investigated with regard to the perturbation level.  相似文献   

19.
Within the Landau–de Gennes theory, the order parameter describing a biaxial nematic liquid crystal assigns a symmetric traceless 3 × 3 matrix Q with three distinct eigenvalues to every point of the region Ω occupied by the system. In the constrained case of matrices Q with constant eigenvalues, the order parameter space is diffeomorphic to the eightfold quotient ${\mathbb{S}^3/\mathcal{H}}$ of the 3-sphere ${\mathbb{S}^3}$ , where ${\mathcal{H}}$ is the quaternion group, and a configuration of a biaxial nematic liquid crystal is described by a map from Ω to ${\mathbb{S}^3/\mathcal{H}}$ . We express the (simplest form of the) Landau–de Gennes elastic free-energy density as a density defined on maps ${q: \Omega \to \mathbb{S}^3}$ , whose functional dependence is restricted by the requirements that (1) it is well defined on the class of configuration maps from Ω to ${\mathbb{S}^3/\mathcal{H}}$ (residual symmetry) and (2) it is independent of arbitrary superposed rigid rotations (frame indifference). As an application of this representation, we then discuss some properties of the corresponding energy functional, including coercivity, lower semicontinuity and strong density of smooth maps. Other invariance properties are also considered. In the discussion, we take advantage of the identification of ${\mathbb{S}^3}$ with the Lie group of unit quaternions ${Sp(1) \cong SU(2)}$ and of the relations between quaternions and rotations in ${\mathbb{R}^3}$ and ${\mathbb{R}^4}$ .  相似文献   

20.
The injection of supercritical carbon dioxide ( $\text{ CO}_{2})$ in deep saline aquifers leads to the formation of a $\text{ CO}_{2}$ rich phase plume that tends to float over the resident brine. As pressure builds up, $\text{ CO}_{2}$ density will increase because of its high compressibility. Current analytical solutions do not account for $\text{ CO}_{2}$ compressibility and consider a volumetric injection rate that is uniformly distributed along the whole thickness of the aquifer, which is unrealistic. Furthermore, the slope of the $\text{ CO}_{2}$ pressure with respect to the logarithm of distance obtained from these solutions differs from that of numerical solutions. We develop a semianalytical solution for the $\text{ CO}_{2}$ plume geometry and fluid pressure evolution, accounting for $\text{ CO}_{2}$ compressibility and buoyancy effects in the injection well, so $\text{ CO}_{2}$ is not uniformly injected along the aquifer thickness. We formulate the problem in terms of a $\text{ CO}_{2}$ potential that facilitates solution in horizontal layers, with which we discretize the aquifer. Capillary pressure is considered at the interface between the $\text{ CO}_{2}$ rich phase and the aqueous phase. When a prescribed $\text{ CO}_{2}$ mass flow rate is injected, $\text{ CO}_{2}$ advances initially through the top portion of the aquifer. As $\text{ CO}_{2}$ is being injected, the $\text{ CO}_{2}$ plume advances not only laterally, but also vertically downwards. However, the $\text{ CO}_{2}$ plume does not necessarily occupy the whole thickness of the aquifer. We found that even in the cases in which the $\text{ CO}_{2}$ plume reaches the bottom of the aquifer, most of the injected $\text{ CO}_{2}$ enters the aquifer through the layers at the top. Both $\text{ CO}_{2}$ plume position and fluid pressure compare well with numerical simulations. This solution permits quick evaluations of the $\text{ CO}_{2}$ plume position and fluid pressure distribution when injecting supercritical $\text{ CO}_{2}$ in a deep saline aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号