首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Mini-channel heat sinks have relatively low Nusselt number due to small Reynolds number. For heat transfer enhancement purpose, a mini-channel radiator with cylinder disturbed flow was proposed. The disturbed flow was created by a circular cylinder placed horizontally in front of channels entrance. The performance of heat transfer and pressure drop with/without disturbed flow was studied experimentally. It was found that the friction factor of mini-channel flow was larger than that of the macro-channel flow due to larger surface roughness, and the pressure drop caused by cylinder disturbed flow was less than 5%. It also concluded that the average Nusselt number increases with augment of Reynolds and Prandtl number. The Nusselt number correlations as the function of the Reynolds and Prandtl number were given for evaluation the heat removal performance of similar heat radiators. There is an inflexion point in the empirical formulas when the channel length equals to the thermal entrance length. For the mini-channels heat radiators with disturbed flow, the inflexion Reynolds number is larger than that of without disturbed flow. Due to the flow pulsing caused by circular cylinder placed in front of channels entrance, the thermal entrance length increases. On the other hand, for both mini-channels with or without disturbed flow, the thermal resistance increases with the decrease of pressure drop.  相似文献   

2.
In this paper, we study the interaction of peristalsis with heat transfer for the flow of a viscous fluid in a vertical porous annular region between two concentric tubes. Long wavelength approximation (that is, the wavelength of the peristaltic wave is large in comparison with the radius of the tube) is used to linearise the governing equations. Using the perturbation method, the solutions are obtained for the velocity and the temperature fields. Also, the closed form expressions are derived for the pressure-flow relationship and the heat transfer at the wall. The effect of pressure drop on flux is observed to be almost negligible for peristaltic waves of large amplitude; however, the mean flux is found to increase by 10-12% as the free convection parameter increases from 1 to 2. Also, the heat transfer at the wall is affected significantly by the amplitude of the peristaltic wave. This warrants further study on the effects of peristalsis on the flow and heat transfer characteristics.  相似文献   

3.
Direct numerical simulation (DNS) of heat transfer in a channel flow obstructed by rectangular prisms has been performed for Reτ = 80–20, where Reτ is based on the friction velocity, the channel half width and the kinematic viscosity. The molecular Prandtl number is set to be 0.71. The flow remains unsteady down to Reτ = 40 owing to the disturbance induced by the prism. For Reτ = 30 and 20, the flow results in a steady laminar flow. In the vicinity of the prism, the three-dimensional complex vortices are generated and heat transfer is enhanced. The Reynolds number effect on the time-averaged vortex structure and the local Nusselt number are investigated. The mechanism of the heat transfer enhancement is discussed. In addition, the mean flow parameters such as the friction factor and the Nusselt number are examined in comparison with existing DNS and experimental data.  相似文献   

4.
Microstructure heat exchangers have unique properties that make them useful for numerous scientific and industrial applications. The power transferred per unit volume is mainly a function of the distance between heat source and heat sink—the smaller this distance, the better the heat transfer. Another parameter governing for the heat transfer is the lateral characteristic dimension of the heat transfer structure; in the case of microchannels, this is the hydraulic diameter. Decreasing this characteristic dimension into the range of several 10s of micrometers leads to very high values for the heat transfer rate.

Another possible way of increasing the heat transfer rate of a heat exchanger is changing the flow regime. Microchannel devices usually operate within the laminar flow regime. By changing from microchannels to three dimensional structures, or to planar geometries with microcolumn arrays, a significant increase of the heat transfer rate can be achieved.

Microheat exchangers in the form of both microchannel devices (with different hydraulic diameters) and microcolumn array devices (with different microcolumn layouts) are presented and compared. Electrically heated microchannel devices are presented, and industrial applications are briefly described.  相似文献   


5.
Experiments were carried out to compare pressure drop and heat transfer coefficients for a plain, microfin, and twisted-tape insert-tubes. The twisted-tape experiments include three different twist ratios each with two different widths. The data were taken at Reynolds numbers well in the laminar region. The heat transfer data were obtained in a single shell-and-tube heat exchanger where steam is used as a heat source to obtain a uniform wall temperature and the working fluid in the tube is oil. The twist ratio and the width of the tape seem to have a large effect on the performance of the twisted-tape insert. The results demonstrate that as the twist ratio decreases, the twisted-tape will give better heat transfer enhancement. The loose-fit (W=10.8 mm) is recommended to be used in the design of heat exchanger where low twist ratios (Y=5.4, and Y=3.6) and high pressure drop situations are expected since it is easier to install and remove for cleaning purposes. Other than these situations, the tight-fit tape gives a better performance over the loose-fit tape. For the microfin tube tested in this paper, the data shows a small increase in both heat transfer and pressure drop. This type of microfin tube is not recommended to be used in laminar flow conditions.  相似文献   

6.
Numerical simulation of high-speed micro-droplet impingement on thin liquid film covering a heated solid surface has been carried out. Effect of droplet Weber number and liquid film thickness on the characteristics of flow and heat transfer has been investigated using the coupled level set and volume of fluid method. The code is validated against both the experimental and numerical results from the literature. Results show that the crown dynamics is mostly affected by variations in the initial film thickness but is weakly influenced by changes in the Weber number. The liquid within the film can be categorized as three regions based on the heat transfer distribution: the static film region, the transition region, and the impact region. The transient local wall temperature shows three stages: first stage when the temperature decreases rapidly, followed by a second stage in which the temperature starts to rise and then becomes almost constant in the third stage. After drop impact, the local Nusselt number continuously increases until reaching a maximum value, and then decreases approaching the initial impact stage. Our analysis of the change in Weber number shows that larger Weber number contributes to intense temperature variation at the crater core relative to other radial locations. Lastly, the results reveal that the thinner liquid film leads to lower wall temperature and hence, higher average Nusselt number.  相似文献   

7.
The paper presents the results of an experimental study that was carried out to determine turbulent friction and heat transfer characteristics of four spirally corrugated tubes, which have various geometrical parameters, with water and oil as the working fluids. Experiments were performed under conditions of Reynolds number varying from 6000 to 93,000 for water, and from 3200 to 19,000 for oil, respectively. The results show that the thermal performance of these tubes was superior compared to a smooth tube, but the heat transfer enhancements were not as large as the friction factor increases. Friction factors and heat transfer coefficient in these rough tubes were analyzed on the basis of momentum and heat transfer analogy, and the correlations obtained were compared with the present data and also the results of previous investigators. A mathematical model to evaluate the performance of spirally corrugated tube, which takes account of the large variation of fluid Prandtl number with temperature, was developed by the extension of previous work of Bergles and Webb. The results reported enable practical designs with standard products and optimization of tube geometry for specific conditions.  相似文献   

8.
An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and helically dimpled tube under turbulent flow with constant heat flux is presented in this work using CuO/water nanofluid as working fluid. The effects of the dimples and nanofluid on the Nusselt number and the friction factor are determined in a circular tube with a fully developed turbulent flow for the Reynolds number in the range between 2500 and 6000. The height of the dimple/protrusion was 0.6 mm. The effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region were investigated. The experiments were performed using helically dimpled tube with CuO/water nanofluid having 0.1%, 0.2% and 0.3% volume concentrations of nanoparticles as working fluid. The experimental results reveal that the use of nanofluids in a helically dimpled tube increases the heat transfer rate with negligible increase in friction factor compared to plain tube. The experimental results showed that the Nusselt number with dimpled tube and nanofluids under turbulent flow is about 19%, 27% and 39% (for 0.1%, 0.2% and 0.3% volume concentrations respectively) higher than the Nusselt number obtained with plain tube and water. The experimental results of isothermal pressure drop for turbulent flow showed that the dimpled tube friction factors were about 2-10% higher than the plain tube. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

9.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

10.
Experiments have been performed to study the heat transfer process of swirling flow issued into a heated convergent pipe with a convergent angle of 5° with respect to the pipe axis. A flat vane swirler situated at the entrance of the pipe is used to generate the swirling flow. During the experiments, the Reynolds number ranges from 7970 to 47,820, and the swirl number from 0 to 1.2. It is found that the convergence of the pipe can accelerate the flow which has an effect to suppress the turbulence generated in the flow and reduce the heat transfer. However, in the region of weak swirl (= 0-0.65), the Nusselt numbers increase with increasing swirl numbers until = 0.65, where turbulence intensity is expected to be large enough and not suppressible. In the region of strong swirl (> 0.65), where recirculation flow is expected to be generated in the core of the swirling flow, the heat transfer characteristic can be altered significantly. At very high swirl (? 1.0), the accelerated flow in the circumferential direction is expected to be dominant, which leads to suppress the turbulence and reduce the heat transfer. The Nusselt number is found proportional to the swirl number. Correlations of the Nusselt numbers in terms of the swirl number, the Reynolds number and the dimensionless distance are attempted and are very successful in both the weak and the strong swirl regions.  相似文献   

11.
Large-eddy simulation results are presented and discussed for turbulent flow and heat transfer in a plane channel with and without transverse square ribs on one of the walls. They were obtained with the finite-difference code Harwell-FLOW3D, Release 2, by using the PISOC pressure-velocity coupling algorithm, central differencing in space, and Crank-Nicolson time stepping. A simple Smagorinsky model, with van Driest damping near the walls, was implemented to model subgrid scale effects. Periodic boundary conditions were imposed in the streamwise and spanwise directions. The Reynolds number based on hydraulic diameter (twice the channel height) ranged from 10 000 to 40 000. Results are compared with experimental data, k-? predictions, and previous large-eddy simulations.  相似文献   

12.
The heat transfer coefficients of the evaporative water flow in mini/microchannels are studied experimentally to explore the novel heat dissipation for high power electronics. Two sets of parallel channels which are 61 channels with hydraulic diameter of 0.293 mm and 20 channels with hydraulic diameter of 1.2 mm are investigated respectively. The inlet and outlet temperatures of fluids, and the temperatures beneath the channels are measured to calculate the heat dissipation of the evaporative water in channels. The experiments are carried out with the mass flow rates range from 11.09 kg/(m2 s) to 44.36 kg/(m2 s) for minichannels and 49.59 kg/(m2 s) to 198.37 kg/(m2 s) for microchannels. The effective heat flux range from 5 W/cm2 to 50 W/cm2, and the resulted outlet vapor qualities range from 0 to 0.8. The relations of the heat transfer coefficient with heat flux and vapor quality are analyzed according to the results. The experimental heat transfer coefficients are compared with the prediction of latest developed correlations. A new correlation takes the effect of Bond number is proposed, and be verified that it is effective to predict the heat transfer coefficient of both minichannels and microchannels in a large range of vapor qualities.  相似文献   

13.
In the present experimental study, a correlation is proposed to represent the heat transfer coefficients of the boiling flows through horizontal rectangular channels with low aspect ratios. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2 mm while the channel width being fixed to 20 mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200 kg/m2 s and the channel walls were uniformly heated up to 15 kW/m2. The quality range covers from 0.15 to 0.75 and the flow pattern appeared to be annular. The modified Lockhart–Martinelli correlation for the frictional pressure drop was confirmed to be within an accuracy of ±20%. The heat transfer coefficients increase with the mass flux and the local quality; however the effect of the heat flux appears to be minor. At the low mass flux condition, which is more likely to be with the smaller gap size, the heat transfer rate is primarily controlled by the liquid film thickness. A modified form of the enhancement factor F for the heat transfer coefficient in the range of ReLF200 well correlates the experimental data within the deviation of ±20%. The Kandlikar's flow boiling correlation covers the higher mass flux range (ReLF>200) with 10.7% mean deviation.  相似文献   

14.
15.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

16.
An experimental investigation of complete condensation flow is undertaken for a range of mass flow rates between 3.4 and 13.8 kg/m2 s. The associated flow regimes are visualized using an ombroscopic technique. Two major flows are observed (with or without release of bubbles). A critical value of the mass flow rate is obtained at the transition between these two regimes. The visualization also enables a local parameter to be determined: the void fraction. The influence of the presence of a bubbly zone is highlighted by the heat transfer and pressure drops. Finally, the dependence of the critical value of the mass flow rate on the temperature of the secondary flow is obtained.  相似文献   

17.
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.  相似文献   

18.
The effects of variable physical properties on the flow and heat transfer characteristics of simultaneously developing slip-flow in rectangular microchannels with constant wall temperature are numerically investigated. A colocated finite-volume method is used in order to solve the mass, momentum and energy equations in their most general form. Various channel aspect ratios are studied at different Knudsen numbers. Simulations indicate that the constant physical property assumption can result in under/over-prediction of the local friction and heat transfer coefficients depending on the problem configuration. Density and thermo-physical property variations have significant effects on predicting flow and heat transfer characteristics in the developing and fully-developed regions. The degree of discrepancy varies for different cases depending on Knudsen number, aspect ratio and the temperature difference between the channel inlet and the wall. The results suggest that even low temperature differences can alter the friction and heat transfer coefficients considerably.  相似文献   

19.
Flow patterns, the pressure drag reduction and the heat transfer in a vertical upward air–water flow with the surfactant having negligible environmental impact were studied experimentally in a tube of 2.5 cm in diameter. Visual observations showed that gas bubbles in the air–water solution with surfactant are smaller in size but much larger in number than in pure air–water mixture, at the all flow regimes. The transition lines in the flow regime map for the solution of air–water mixture with surfactant of the 300 ppm concentration are mainly consistent with the experimental data obtained in clear air–water mixture. An additive of surfactant to two-phase flow reduces the total pressure drop and decrease heat transfer, especially in the churn flow regime.  相似文献   

20.
The two-dimensional equations of motions for the slowly flowing and heat transfer in second grade fluid are written in cartesian coordinates neglecting the inertial terms. When the inertia terms are simply omitted from the equations of motions the resulting solutions are valid approximately for Re?1. This fact can also be deduced from the dimensionless form of the momentum and energy equations. By employing Lie group analysis, the symmetries of the equations are calculated. The Lie algebra consist of four finite parameter and one infinite parameter Lie group transformations, one being the scaling symmetry and the others being translations. Two different types of solutions are found using the symmetries. Using translations in x and y coordinates, an exponential type of exact solution is presented. For the scaling symmetry, the outcoming ordinary differential equations are more involved and only a series type of approximate solution is presented. Finally, some boundary value problems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号