首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
By using the wavefunctions obtained from diagonalizing the complete d^3 energy matrix at normal and various pressures,the g factor of the ground state of SrTiO3:Cr^3 and its pressure-induced shift have been microscopically calculated.Only by taking the local strains around Cr^3 in SrTiO3:Cr^3 (which are about twice the bulk ones)and corresponding P-χ dependence,can we obtain a good agreement etween the calculated result of pressure-induced shift of ground-state g factor and the experimental one.The physical origins of this pressure-induced shift have been explained.It is found that the change of Dq^-1 with pressure makes main contribution to the pressure-induced shift of ground-state g factor of SrTiO3:Cr^3 .By using the wavefunctions obtained from diagonalizing the complete d^3 energy matrix at normal pressure,the relevant matrix elements and accordingly strain-induced splittings of t2^32E and t2^34A2 of SrTiO3:Cr^3 have been calculated.The important results of Yc.Zc,Pc and Qc have also been evaluated.It is the admixtures of basic wavefunctions resulted from the spin-orbit interaction and /or Coulomb interaction and /or Kramers degeneracy that make the strain-induced splittings of the levels nonzero.It is found that there are nonvanishing matrix elements of operators T2ξ between wavefuncgtions with positive Ms and those with negative Ms′ and those with negative ms′,which have important effects on the strain-induced splittings of the levels.  相似文献   

2.
With the strong-field scheme and trigonal bases, the complete d3 energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the energy spectrum of YGG:Cr^3+ at normal pressure and low temperature has been calculated. The g factor of the ground-state has been evaluated in terms of the energy spectrum. At the same time, by using the wavefunctions obtained from diagonalizing the complete d^3 energy matrix and Thermal Shifts theory, we calculate the thermal shifts of the sharp lines of YGG:Cr^3+ and determine the relevant parameters. The calculated results are all in good agreement with the optical-spectrum and EPR experimental data. It is demonstrated that the obtained wavefunctions and the values of parameters are reasonable.  相似文献   

3.
By making use of the diagonalization of the complete d^3 energy matriz in a trigonally distorted cubic-field and the theory of pressure-induced shifts (PS) of energy spectra,the whole energy spectrum of α-Al2O3:Mn^4 and PS of levels have been calculated.All the calculated results are in excdellent agreement with the experimental data.The comparison between the results of α-Al2O3:Mn^4 and ruby has been made.It is found that on one hand,R1-line and R2-line PS of α-Al2O3:Mn^4 and ruby are linear in pressure over 0-100 kbar,and their values of the principal parameter for PS are very close to each other.On the other hand,the sensitivities of R1-line and R2-line PS of α-Al2O3:Mn^4 are higher than those of ruby respectively,which comes mainly from the difference between the values of parameters at normal pressure of two crystals;moreover,the expansion of d-electron wavefunctions of α-Al2O3:Mn^4 with compression is slightly larger than the one of ruby,and the effective charge experienced by d-electrons of α-Al2O3:Mn^4 decreases with compression more rapidly than the one of ruby.In the final analysis,all these can be explained in terms of the facts that the two crystals are doped α-Al2O3 with two isoelectronic ions;the strengths of the crystal field and covalency of α-Al2O3:Mn^4 are larger than those of ruby respectively,due to the charge of Mn^4 to be larger than that of Cr^3 .  相似文献   

4.
By taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of basic wavefunctions within d3 electronic configuration,the values of the parameters in the expressions of thermal shift (TS) from EPI for the ground level, R level and R line of SrTiO3:Mn4 have been evaluated; the R-line TS and various contributions to it have been calculated in the low-temperature region. It is found that all the three terms of R-line TS from EPI relevant to the lattice vibration are red shifts. The Raman term is the largest, the neighbor-level term is the second, and the optical-branch term is very small over the range of T ≤ 80 K. The contribution to R-line TS from thermal expansion has been approximately neglected in this work. The very strong EPI relevant to its lattice vibration for SrTiO3:Mn4 causes its R-line TS to be an unusually large red-shift. Only by taking into account the strong softening of the low-frequency acoustic modes of the lattice vibration at low temperatures, can we successfully explain the variation of R-line TS of SrTiO3:Mn4 with temperature.``  相似文献   

5.
By taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of basic wavefunctions within d^3 electronic configuration,the values of all the parameters in the expressions of thermal shift (TS) and thermal broadening (TB) due to EPI for the ground level,R level and R line of MgO:Cr^3 have microscopically been evaluated;and then,TS and TB of R line and various contributions to them have uniformly been calculated.The results are in very good agreement with the experimental data.It is found that all the three terms of TS due to EPI are red shifts;the Raman term is the largest one,and the optical-branch term and neighbor-level term are important for TS;the contribution to TS from thermal expansion is blue shift,which is also important.The R-line TS of MgO:Cr^3 comes from the first-order term of EPI.The elastic Raman scattering of acoustic phonons plays a dominant role in R-line TB of MgO:Cr^3 .For both TS and TB,it is very important to take into account all the admixtures of basic wavefunctions within d^3 electronic configuration.  相似文献   

6.
Adsorption and reaction of CO on two possible terminations of SrTiO3 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotentiai based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTiO3 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.  相似文献   

7.
By means of both the theory for pressure-induced Shifts (PS) of energy spectra and the theory for shifts of energy spectra due to electron-phonon interaction (EPI), the normal-pressure energy spectra of α and β centers of Cr^3+ ions for LLGG:Cr^3+ and the PS's of R1 lines and U band of these centers have been calculated at 10 K, respectively. The total calculated results are in very good agreement with the experimental data. For LLGG:Cr^3+, the pressureinduced low-high crystal-field transition and the reversal of R1-line PS take place. The pressure-dependent variation of Rmix^ei (2E - 4T2) [mixing-degree of (t2^2 (^3T1)e^4T2) and (t2^3 E) base-wavefunctions in the wavefunction of R1 state without EPI] plays a key role for the reversal of R1-line PS. The behavior of the pure electronic PS of R1 line is quite different from that of the PS of R1 line due to EPI. It is the combined effect of them that gives rise to the total PS of R1 line. The comparison between R1-line PS's of GSGG:Cr^3+ and LLGG:Cr^3+ has been made. It is found that a peak of R1-line PS appears at Rmix^ei (^2E - ^4T2) ≈ 0.08.  相似文献   

8.
By means of improved ligand-field theory, the "pure electronic" pressure-induced shift (PS) and the PS due to electron-phonon interaction (EPI) of R-line of MgO:Cr^3+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. The behaviors of the pure electronic PS of R-line of MgO:Cr^3+ and the PS of its R-line due to EPI are different. It is the combined effect of them that gives rise to the total PS of R-line, which has satisfactorily explained the experimental results. The comparison between the feature of R-line PS of MgO:Cr^3+ and that of R1-line PS of ruby has been made.  相似文献   

9.
Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, the R-line, t^3 2^2 T1 lines, t^2 2(^3 T1)e^4 T2, and t^2 2(^3T1)e^4T1 bands, ground-state g factor, four strain-induced level- splittings, and R-line thermal shift of MgO:Cr^3+ have been calculated. The results are in very good agreement with the experimental data. It is found that for MgO:Cr^3+, the contributions due to electron-phonon interaction (EPI) come from the first-order term. In thermal shift of R-line of MgO:Cr^3+, the temperature-dependent contribution due to EPI is dominant.  相似文献   

10.
Electronic structures of the Mn^2+ :CdMoO4 crystal axe studied within the framework of the fully relativistic self-consistent Dirac Slater theory, using a numerically discrete variation (DV-Xα) method. The calculated results indicate that the 3d states of Mn have donor energy level in the forbidden band of CdMoO4 crystal. The O^2- transition energy of O 2p→Mn 3d is 3.12eV under excitation corresponding electronic transition being O^2-+Mn^2+→↑hvex=3.12 eV O^-- +Mn^+→↑hvem O^2-+Mn^2+. It is predicted that the wavelength of emission should be located in the range of the 500-600nm. Thus the 500-600mm emission bands peaking at 550nm (2.25eV) of CdMoO4 crystal under excitation may be related to the Mn-like dopant ion in CdMoO4 crystal.  相似文献   

11.
With the strong-field scheme and trigonal bases, by diagonalizing the complete d3 energy matrix in a trigonally distorted cubic-field, the energy spectra and wavefunctions of YAl3(BO3)4:Cr3+ have been calculated. The rates of change of levels with respect to various parameters and the contributions to levels from various parameters are calculated, and the physical origins of various levels or splittings have been clearly and quantitatively shown. By using the wavefunctions obtained from diagonalizing the complete energy matrix, the g factors of the ground state of YAl3(BO3)4:Cr3+ have been evaluated. The calculated results are in good agreement with the optical-spectral and EPR experimental data. It is demonstrated that the bonding between Cr3+ and ligands (O2-) is ionic.  相似文献   

12.
By diagonalizing the complete d3 energy matrix in a trigonally distorted cubicfield and using the wavefunctions from it, unified calculations of the whole energy spectrum as well as the g factors of the ground state and t23 2 E excited states for α-A1203:Cr3+ and α-A1203:Mn4+ have been carried out respectively. A11 the calculated results are in very good agreement with the experimental data. The comparison between the results of the two crystals has been made, which demonstrates that the covalency of α-A1203:Mn4+ is stronger than the one of α-A1203:Cr3+. For the zero-field splittings of the ground state and t23 2 E , their physical origins are revealed; the comparison and analysis of their values of the two crystals have been made.  相似文献   

13.
By taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of basic wavefunctions within d3 electronic configuration, the values of the parameters in the expressions of thermal shift (TS) from EPI for the ground level, R level and R line of SrTiO3:Mn4+ have been evaluated; the R-line TS and various contributions to it have been calculated in the low-temperature region. It is found that all the three terms of R-line TS from EPI relevant to the lattice vibration are red shifts. The Raman term is the largest, the neighbor-level term is the second, and the optical-branch term is very small over the range of T≤80 K. The contribution to R-line TS from thermal expansion has been approximately neglected in this work. The very strong EPI relevant to its lattice vibration for SrTiO3:Mn4+ causes its R-line TS to be an unusually large red-shift. Only by taking into account the strong softening of the low-frequency acoustic modes of the lattice vibration at low temperatures, can we successfully explain the variation of R-line TS of SrTiO3$:Mn4+ with temperature.  相似文献   

14.
张萍  张纪平 《波谱学杂志》2010,27(2):249-253
利用配位场理论,在强场方案下,建立了包括立方晶场、库仑相互作用、自旋-轨道耦合、低对称场的d3完全能量矩阵,对LaAlO3:Cr3+在低温常压下的能谱进行了拟合,确定了相应的参量,得到了与实验值比较相符的能谱,并利用所得的波函数计算了LaAlO3:Cr3+基态的 g 因子,与实验结果相吻合. 根据所得参量分析了Cr3+与配位体之间相互作用的特性.  相似文献   

15.
By using strong-field scheme, the complete d5 energy matrix with D2d symmetry has been constructed. Then, by diagonalization of this matrix at normal and various pressures,the whole energy spectrum [including the ground-state zero-field-splitting (GSZFS)], its PS and the g factor of the ground state for zns:Mn2+ have uniformly been calculated. According to the eigenfunctions and PS, the new assignments of five absorption bands have been given.The variation of tetragonal field with pressure makes a main contribution to the pressureinduced shift (PS) of GSZFS of zns:Mn2+, which supports the existence of tetragonal Jahn-Teller distortion in zns:Mn2+. It is found that when P≥62 kbar, t24(3T1)e4T1 merges with t2e4 2T2, which has to be taken into account in the calculation of PS of the fifth band in the range of 1 bar ~ 95 kbar. It is demonstrated that the Mn2+ ions in ZnS:Mn2+ have tetrahedral coordination, and the difference between ζ and ζ' caused by the covalency effect is very important for GSZFS. The physical essentials of typical levels, GSZFS and their PS have been revealed. By taking into account the influence of covalency on t23(4A2)e2(3A2)4A1 and t23(2E)e2(3A2)4E, the positon of the third absorption band at normal pressure has been estimated.  相似文献   

16.
By means of both the theory for pressure-induced shifts (PS) of energy spectra and the theory for shifts of energy spectra due to electron-phonon interaction (EPI), at 300 K, the `pure electronic' contributions and the contributions from EPI to R1 line, R2 line, and U band of GGG:Cr3+ as well as their PS have been calculated, respectively. The total calculated results are in good agreement with all the experimental data. Their physical origins have been explained. It is found that the mixing-degree of |t22(3T1)e 4T2> and |t232E> base-wavefunctions in the wavefunctions of R1 level of GGG:Cr3+ is considerable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role for PS of R1 line or R2 line. At 300 K, both the temperature-independent contribution to R1 line (or R2 line or U band) from EPI and the temperature-dependent one are important. The remarkable difference between pressure-dependent behaviors of PS of R1 lines of GGG:Cr3+ and GSGG:Cr3+ results from the differences of their microscopic properties. The features of emission spectra of GGG:Cr3+ at various pressures have satisfactorily been explained.  相似文献   

17.
彭玲玲  曹仕秀  赵聪  刘碧桃  韩涛  李凤  黎小敏 《物理学报》2018,67(18):187801-187801
采用高温固相法在空气气氛中合成了新型Mg_(1+y)Al_(2-x)O_4:xMn~(4+),yMg~(2+)深红色荧光粉.利用X射线衍射仪、扫描电子显微镜和荧光光谱仪表征荧光粉的晶体结构和形貌,并分析了发光性质,讨论了掺杂不同浓度Mn4+和过量Mg2+对样品发光强度的影响.结果表明,在300 nm波长激发下样品发射652 nm波长的红光,归因于Mn~(4+)的~2Eg—~4A_(2g)跃迁, Mn~(4+)的最佳掺杂浓度为0.14%.采用Blasse公式计算了Mn~(4+)-Mn~(4+)之间能量传递的临界距离,讨论了可能的能量传递过程和引起浓度淬灭的原因,采用Tanabe-Sugano能级图从理论上计算和分析了Mn~(4+)的d~3电子构型的晶体场强度大小.过量Mg~(2+)可以提高荧光粉的发光强度,同时导致了荧光寿命的缩短,荧光衰减曲线呈单指数变化.探讨了过量Mg~(2+)增强发光强度的机理,阐述了深红色荧光粉MgAl_2O_4:Mn~(4+)发光效率提高的原因.  相似文献   

18.
By using strong-field scheme, the complete d5 energy matrix with symmetry has been constructed. Then, by diagonalization of this matrix at normal and various pressures,the whole energy spectrum [including the ground-state zero-field splitting (GSZFS)] and its pressure-induced shift (PS) of Znlb:Mn2+ have uniformly been calculated. The results are in very good agreement with experimental data. According to the eigenfimctions and PS, the assignments of four absorption bands have been given. By taking into account the dect of different deformations of t2 and e radial wavefunctions on t23(4A2)e2(3A2)4 A1 and t23(2E)e2(3A2)4E, the position of the third absorption band at normal pressure has been estimated.The tetragonal field is important for GSZFS of ZnTe:Mn2+ and its PS, which supports the existence of tetragonal Jahn-Teller distortion in ZnTe:Mn2+ The physical essentials of typical levels, GSZFS and their PS have been revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号