首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The collocation method for the numerical solution of Fredholm integral equations of the second kind is applied, properly modified, to the numerical solution of Cauchy type singular integral equations of the first or the second kind but with constant coefficients. This direct method of numerical solution of Cauchy type singular integral equations is compared afterwards with the corresponding method resulting from applying the collocation method to the Fredholm integral equation of the second kind equivalent to the Cauchy type singular integral equation, as well as with another method, based also on the regularization procedure, for the numerical solution of the same class of equations. Finally, the convergence of the method is discussed.  相似文献   

2.
A simple method based on polynomial approximation of a function is employed to obtain approximate solution of a class of singular integral equations of the second kind. For a hypersingular integral equation of the second kind, this method avoids the complex function-theoretic method and produces the known exact solution to Prandtl's integral equation as a special case. For a particular singular integro-differential equation of the second kind, this also produces an approximate solution which compares favourably with numerical results obtained by various Galerkin methods. The convergence of the method for both the equations is also established.  相似文献   

3.
Soldatenkov  I. A. 《Mathematical Notes》2003,74(5-6):695-700
A method for solving a certain system of singular integral equations with constant coefficients is proposed. It is based on a procedure for reducing singular equations to equations with continuous difference kernel; the solution of the latter is constructed by using the classical Fourier transform in the class of absolutely integrable functions. Explicit expressions for the solution of the singular integral equations under consideration are obtained.  相似文献   

4.
A nonlinear strongly singular integral equation, which can be reduced to a nonlinear singular integro-differential equation of Prandtl's type, is considered. A collocation method for solution is treated and the convergence of the approximated solution to the unique solution of the nonlinear integral equation is proved.  相似文献   

5.
This paper presents a volume integral equation method for an electromagnetic scattering problem for three-dimensional Maxwell's equations in the presence of a biperiodic, anisotropic, and possibly discontinuous dielectric scatterer. Such scattering problem can be reformulated as a strongly singular volume integral equation (i.e., integral operators that fail to be weakly singular). In this paper, we firstly prove that the strongly singular volume integral equation satisfies a Gårding-type estimate in standard Sobolev spaces. Secondly, we rigorously analyze a spectral Galerkin method for solving the scattering problem. This method relies on the periodization technique of Gennadi Vainikko that allows us to efficiently evaluate the periodized integral operators on trigonometric polynomials using the fast Fourier transform (FFT). The main advantage of the method is its simple implementation that avoids for instance the need to compute quasiperiodic Green's functions. We prove that the numerical solution of the spectral Galerkin method applied to the periodized integral equation converges quasioptimally to the solution of the scattering problem. Some numerical examples are provided for examining the performance of the method.  相似文献   

6.
In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.  相似文献   

7.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
求解一类具有Hibert核的奇异积分方程的小波方法   总被引:1,自引:0,他引:1  
1 引  言近年来,用小波方法数值求解积分方程越来越引起人们的注意.文献[1]提出的算法可将一类积分算子所对应的矩阵稀疏化,为小波方法快速求解积分方程开辟了一条新的道路这方面的研究不仅可以深入发展小波理论和应用算法,深入发展小波方法的功效,而且对边界元方法有重要的指导意义.然而研究稳健快速的数值方法,一直是这方面研究的难点问题.本文考虑带Hilbert核的奇异积分方程q(y)=12π∫2π0f(x)ctg12(x-y)dx,y∈[0,2π],(1.1)的小波数值解法;其中f(x)∈H2π,q(y)∈H2π是以2π为周期的Holder类函数;q(y)已知,f(x)待求解;(1.1)式右…  相似文献   

9.
We propose a numerical-analytic method of solving singular integral equations with a singular kernel of Cauchy type on an interval. The method relies on the construction of a regular operator of special form, whose action on the original singular equation leads to an integral equation that admits an explicit solution. Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, No. 37, 1994, pp. 36–40.  相似文献   

10.
针对带有弱奇异核的第二类Fredholm积分方程数值解法问题,介绍了两种方法.一种方法是直接用L~1空间中的离散化方法求其数值解;另一种方法是将弱奇异核通过迭代变为连续核,再用L~1空间中的离散化方法求其数值解,且通过对具体算例作图分析,从而得出直接用L~1空间中离散化方法更好.  相似文献   

11.
It is shown that the direct Gauss-Chebyshev method used for the numerical solution of singular integral equations of Cauchy-type possesses a unique solution for sufficiently largen.  相似文献   

12.
We discuss here a method for the extraction of the singularparts of a variety of problems involving singular integrands.The method is based on the systematic use of a partial fractionidentity; we give here applications to numerical quadratureand to the solution of singular integral equations of variouskinds.  相似文献   

13.
本文对求解亚音速流的偶极子基本解法作了新的处理,导出了一个关于求解偶极子强度的强奇性积分方程,给出了强奇性积分有效主值的定义及计算公式.由此可以导出多种整体连续分布的数值基本解法.适用于亚音速气动力计算.  相似文献   

14.
研究了一类两参数非线性反应扩散积分微分奇摄动问题.利用奇摄动方法,构造了问题的外部解、内部激波层、边界层及初始层校正项,由此得到了问题解的形式渐近展开式.最后利用积分微分方程的比较定理证明了该问题解的渐近展开式的一致有效性.  相似文献   

15.
Some iterative variants of the Nyström method for the numerical solution of linear and nonlinear integral equations are introduced and discussed. Numerical examples are given; some are for integral equations with singular kernel functions.  相似文献   

16.
A finite section method for the approximate solution of singular integral equations with piecewise continuous coefficients on intervals is considered. The problem is transformed in such a way that results which were previously obtained for singular integral equations on the unit circle using localization methods in Banach algebras are applicable to it. Thus, necessary and sufficient conditions for the stability of the approximation method can be proved.  相似文献   

17.
In this paper, we consider Galerkin method for weakly singular Fredholm integral equations of the second kind and its corresponding eigenvalue problem using Legendre polynomial basis functions of degree ≤n. We obtain the convergence rates for the approximated solution and iterated solution in weakly singular Fredholm integral equations of the second kind and also obtain the error bounds for the approximated eigenelements in the corresponding eigenvalue problem. We illustrate our results with numerical examples.  相似文献   

18.
The direct quadrature method for the numerical solution of singular integral equations with Hilbert kernel is investigated and a very accurate natural interpolation formula for the approximation of the unknown function is proposed. It is further proved that this formula coincides with Nyström's natural interpolation formula for the Fredholm integral equation of the second kind equivalent to the original integral equation if the same quadrature rule is used in both cases.  相似文献   

19.
In this paper, the weakly singular Volterra integral equations with an infinite set of solutions are investigated. Among the set of solutions only one particular solution is smooth and all others are singular at the origin. The numerical solutions of this class of equations have been a difficult topic to analyze and have received much previous investigation. The aim of this paper is to present a numerical technique for giving the approximate solution to the only smooth solution based on reproducing kernel theory. Applying weighted integral, we provide a new definition for reproducing kernel space and obtain reproducing kernel function. Using the good properties of reproducing kernel function, the only smooth solution is exactly expressed in the form of series. The n-term approximate solution is obtained by truncating the series. Meanwhile, we prove that the derivative of approximation converges to the derivative of exact solution uniformly. The final numerical examples compared with other methods show that the method is efficient.  相似文献   

20.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号