首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Exciplexes of 9-cyanophenanthrene with a series of weak electron donors with the Gibbs energy of electron transfer G et * varying in the range –(0.02–0.09) eV were studied. The exciplexes exhibited fairly intense emission both in nonpolar and aprotic polar solvents. The kinetics of the exciplex formation was found to be controlled mainly by diffusion and reactant orientation. This is clearly manifested in the low-temperature region in which the activation enthalpy of exciplex formation is very close to the activation enthalpy of diffusion, and the activation entropy of exciplex formation does not exceed 18 J mol–1 K–1 in absolute value.  相似文献   

2.
The factors affecting the rate of formation and decay of exciplexes with partial charge transfer, which form in the kinetic region of photoinduced electron transfer (G * et > –0.2 eV), were studied. The rate of formation of exciplexes is controlled mainly by the diffusion of reactants and the low steric factor (0.15–1.0). The activation enthalpy and entropy for the exciplex formation (9–13 kJ mol–1 and –(12–28) J mol–1 K–1) are close to the activation enthalpy and entropy of diffusion, respectively. Charge transfer in an exciplex and polarization of the medium generally occur after passing the transition state. In contrast, the activation enthalpy of exciplex decay (its conversion into the reaction products) is close to zero (±6 kJ mol–1) and the activation entropy is strongly negative –(80–130) J mol–1 K–1.  相似文献   

3.
The emission spectra and lifetimes of the vapor-phase exciplexes of four cyano-substituted anthracenes with N,N-dimethylaniline (DMA) as a donor are examined over a wide temperature range. The activation energies associated with the exciplex dissociation are calculated to be of the order of 10 kcal/mol. The entropy change in forming the exciplexes is discussed in relation to the efficiency of the exciplex formation. For various donors other than DMA, preliminary results on how they interact with excited 9,10-dicyanoanthracene are also given.  相似文献   

4.
Fluorescence rise and decay processes were measured and rate parameters were determined for the pyrene-tri-n-butylamine and pyrene-N,N-diethylaniline exciplex system in various solvents. An additional activation energy over that for the diffusional motion appears necessary for both exciplex formation and the deactivating quenching processes in the case of the pyrene-tri-n-butylamine system. The rate-determining step for these processes is electron transfer in the encounter collision leading to the nonrelaxed electron transfer state.  相似文献   

5.
A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90° exhibit (−)- and (+)-CPL, respectively.

Axially chiral binaphthyls and quaternaphthyls possessing two kinds of fluorophores were synthesized. In the excited state, the fluorophores formed a twisted exciplex and exhibited CPL. This study gave us named the exciplex chirality rule.  相似文献   

6.
Conclusions The rate constants were measured for the annihilation of the triplet exciplexes of quinones with 4-phenylaniline in various solvents and the prototropic equilibrium constants in the primary exciplex were also determined. Hydrogen bonding between the radicals in the exciplex leads to an acceleration of radiationless deactivation of the exciplex to the ground state and retardation of the dissociation of the exciplexes into radical-ions. The solvation of the exciplexes of an alcohol is accompanied by a decrease in the rate of deactivation of the exciplexes to the ground state.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2587–2590, November, 1986.  相似文献   

7.
The fluorescence decays of several exciplexes with partial charge transfer have been investigated in solvents of various polarity. The measured lifetimes are found to be in reasonable agreement with the activation enthalpy and entropy of exciplex decay obtained earlier from the temperature dependence of the exciplex emission quantum yields. For exciplexes with 9-cyanophenanthrene substantial contribution of the higher local excited state into the exciplex electronic structure is found and borrowed intensity effect enhances the exciplex emission rate constants.  相似文献   

8.
The emissive properties of a bichromophor molecule (1) are reported. This contains an anilino group as an electron donor (D) and a 1-cyanonaphthalene group as an electron acceptor (A) interconnected by a saturated hydrocarbon bridge of limited flexibility, which holds D and A far apart in the electronic ground state. The emission spectrum of 1, both in solution and in the gas phase, indicates that quantitative formation of an intramolecular exciplex between D and A occurs. This exciplex formation was studied as a function of excitation energy in molecules of 1 isolated in a supersonic free jet. A barrier of 1700 ± 200 cm−1 was found between the Franck-Condon excited conformation and the conformation of the exciplex. Although this value is significantly higher than that reported earlier for exciplex formation between chromophores connected by a simple polymethylene chain (≈ 900 cm−1) it is much lower than the barrier predicted for folding the bridge in 1 sufficiently to bring D and A in close contact. A tentative explanation of this discrepancy is given.  相似文献   

9.
The absorption and emission properties of benzimidazol-2-yl-quinoline (BIQ) and bis (2-(benzimidazol-2-yl) quinolinato) zinc (ZnBIQ) a new emitter used for organic light emitting device (OLED) were reported. Exciplexes are observed for ZnBIQ with N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) system, in both electro- and photoluminescent processes. The identification of exciplex emission in co-evaporated and multi-layer ZnBIQ thin film was reported for the first time. The optical formation of the exciplex involves the excitation of a single molecule, followed by the relaxation of that exciton into a lower energy exciplex state. Both BIQ and ZnBIQ possess very high thermal stabilities and can be purified by subliming under the high vacuum condition. Devices consisting of ZnBIQ as the emitting layer have been fabricated, and the emission spectra of ZnBIQ-base devices gave a voltage-dependent spectrum, with the red emission observed (3-7 V), switching over to strong white emission as the bias was raised.  相似文献   

10.
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.  相似文献   

11.
The photophysical properties of a prototypic donor–acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso‐phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited‐singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170<P<550 MPa), the molecule undergoes reversible distortion that has a small effect on the yield of π, π* emission but severely quenches exciplex fluorescence. In the limiting case, this high‐pressure effect decreases the molar volume of the solute by approximately 25 cm3 and opens a new channel for nonradiative deactivation of the excited‐state manifold.  相似文献   

12.
The kinetics of acrylonitrile polymerization photoinitiated by aromatic hydrocarbons have been studied. For the acrylonitrile polymerization photoinitiated by naphthalene the rate of polymerization depends on the square root of incident light intensity, on the square root of naphthalene concentration, and on the 1.5 power of acrylonitrile concentration. In the system acrylonitrile-1-methoxynaphthalene the rate of acrylonitrile polymerization depends on the first power of acrylonitrile concentration. The monoradical character of this polymerization process has been established. For the interpretation of experimental results a reaction mechanism involving the formation of the exciplex between the first singlet or triplet of aromatic hydrocarbon and acrylonitrile in the ground state as a precursor of polymerization reactions is suggested. The photoinitiating efficiency of various aromatic hydrocarbons in acrylonitrile polymerization increases in the order: fluoranthene (zero efficiency) ? pyrene < phenanthrene, fluorene ≈ 2-methoxynaphthalene ≈ biphenyl < anthracene < 2-methylnaphthalene < 1-methoxynaphthalene < 2,3,6-trimethylnaphthalene < 2,3-dimethylnaphthalene ≈ naphthalene < 1-methylnaphthalene < 2,6-dimethylnaphthalene < p-terphenyl < acenaphthene, provided that the systems absorb the same amount of the incident light. The explanation of this result ensues from the study of the effect of concentration on the rate of polymerization and from the quenching of hydrocarbon fluorescence by acrylonitrile. The photoinitiating efficiency of a given aromatic hydrocarbon is mainly determined by the value of the rate constant kq for the formation of exciplex as well as the self-quenching efficiency of aromatic hydrocarbon. By using the literature data for the lifetime of fluorescence τ the values of kq were calculated from the Stern-Volmer equation expressing the quenching of hydrocarbon fluorescence by acrylonitrile. The order of aromatic hydrocarbons according to increasing values of kq is as follows: pyrene < phenanthrene < anthracene ≈ naphthalene < 2-methylnaphthalene ≈ 1-methylnaphthalene ≈ 2,3-dimethylnaphthalene < 2,6-dimethylnaphthalene < acenaphthene < p-terphenyl < 1-methoxynaphthalene. The study of the concentration effect reflecting the self-quenching of aromatic hydrocarbons during polymerization has given the following sequence for decreasing self-quenching efficiency of aromatic hydrocarbons: 2-methoxynaphthalene ≈ pyrene > anthracene > 1-methoxynaphthalene > fluorene > 2,6-dimethylnaphthalene, phenanthrene, acenaphthene > 2,3,6-trimethylnaphthalene > 2,3-dimethylnaphthalene > 1-methylnaphthalene > naphthalene. It has been shown that the photoinitiating efficiency of a given aromatic hydrocarbon in the polymerization of acrylonitrile can be roughly predicted from the position of that aromatic hydrocarbon in the above-mentioned sequences.  相似文献   

13.
Abstract— Emission spectra of poly[2-(4-N,N-dimethylaminobenzyl)-2-(l-pyrenylmethyl)ethyl methacryl-ate] (I) and the copolymers with vinyl-benzyltriethylammonium chloride (II) or sodium p-styrenesulfo-nate (III) were studied in extremely polar media such as dimethylformamide (DMF) and water. While the emission by the monomer model compound (2-(4-N,N-dimethylaminobenzyl)-2-(l-pyrenylmethyl)-ethyl isobutyrate(IV)) scarcely showed exciplex emission in DMF or aqueous DMF, exciplex by I was clearly observed in the same solvents. Furthermore, the ratio of exciplex intensity (Fe) to monomer intensity (Fm) increased by the addition of water to the DMF solution up to 60 vol%. This abnormal spectral behavior of increasing exciplex emission intensity with solvent polarity was interpreted as being due to shrinking of polymer chain. The peaking wavelength of exciplex shifted towards blue in the presence of water, indicating that the solvation of exciplex was hindered and/or the hydrophobic domain was organized. This interpretation was supported by the exciplex emission of II in water. No exciplex was detected from III in water. This is the first example of exciplex emission in homogeneous aqueous solution. In comparison with the published results of micellar systems, the exciplex emission of the polycation indicated that the hydrophobic domain in the polycation was so strong that the solvation of exciplex was considerably hindered. The peaking wavelength of exciplex at 480 nm also lends support to the presence of a non-polar microenvironment.  相似文献   

14.
The exciplex formation in 9-vinylphenanthrene-p-N,N-dimethylaminostyrene copolymers, its characteristics, and the electron transfer process in polar solvents were studied. The copolymer exhibited a more intense intramolecular exciplex fluorescence than the low-molecular-weight model system, phenanthrene-N,N-dimethylaniline, in which the intermolecular exciplex formation occurred. Intensities of the exciplex fluorescence, which were unchanged regardless of the copolymer composition, led us to speculate that the efficient energy migration takes place from an excited phenanthrene unit to an exciplex forming site on the polymer chain. The electron transfer in the copolymer-p-dicyanobenzene system was studied in polar media. The formation of p-dicyanobenzene anion radical was measured by flash photolysis and electron spin resonance (ESR). p-Dicyanobenzene anion radical was generated by the electron transfer process via exciplex and the direct electron transfer process from the excited phenanthrene unit in the copolymer.  相似文献   

15.
The effect of the electronic structure of aromatic (anthracene) and heteroaromatic (phenazine, acridine, 9-methyl-1,2-benzacridine) compounds on the mechanism of the formation of exciplexes with N,N-dimethylaniline and their further transformations in media with various polarities was investigated by the quenching of the fluorescence of the exciplex. It was shown that for heteroaromatic compounds characterized by a substantial contribution from the n* electronic configuration to the lowest excited singlet state, in contrast to aromatic compounds, the exciplex is formed in two stages, i.e., nonequilibrium Franck-Condon and equilibrium stages. The photodissociation processes for these systems in polar media also take place from a non-equilibrium state. The important role of the steric configuration of the components of the exciplex in its relaxation process was also noticed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 4, pp. 448–454, July–August, 1990.  相似文献   

16.
The dynamics of exciplex and radical ion formation was studied in donor–acceptor systems with G * et > –0.1 eV. It was shown that the quenching of excited singlet states of aromatic molecules by electron donors in polar solvents led to the formation of radical ions via exciplex dissociation resulting to complete charge separation. Intersystem crossing and internal conversion into the ground state (back electron transfer) compete with this process. The quantum yields and the rate constants of the radical ion formation were measured.  相似文献   

17.
Abstract— Electron-scavenging experiments with N2O as scavenger demonstrate at least two electron-producing reactions of the excited singlet states of the exciplex species formed by indole or 1 -methyl-indole with water. Most electrons reacting with N2O result from collision of the scavenger with a metastable state formed from the initial exciplex state but finite electron yields from indole and 1-methyl-indole at limiting scavenger concentrations suggest that the intermediate states also eject electrons directly into the solvent. The formation of the first metastable state from the fluorescent exciplex state has an activation energy, EM, estimated to be about 13 kcal/mole for both indole and 1 -methyl-indole water exciplexes. The EM values for 1-methyl-indole from fluorescence and electron yields are the same, Indicating that at neutral and alkaline pH fluorescence quenching and electron extraction are both being controlled by the formation of the first metastable intermediate. Observed electron yields from indole-water and indole-methanol exciplexes are less than predicted using fluorescence data, although EM values of 1 kcal/mole are obtained for the indole-methanol exciplex by both methods. At pH 12·0 and 28°C the total electron yields for indole-water and 1 -methyl-indole-water exciplexes are 0·30 and 0·25, respectively. The residual yields attributed to outright formation of hydrated electrons from the initial exciplex excited stateare 0·11 and 0·05, respectively. Electron yields from the indole-water exciplex are strongly pH dependent only near pH 1 where the fluorescence yields as well as the electron yields decrease rapidly with increasing acidity. The 1-methyl-indole-water exciplex shows an additional pH dependence which is first-order in hydrogen-ion activity and has an effective pKa of about 11·5. Comparable yields for indole and 1-methyl-indole are found only above pH 12. High electron yields are found with indole in the exciplex-forming solvent dioxane and in the non-exciplex forming solvent cyclohexane. For the latter system electrons are probably derived only from the lowest excited state of indole on collision with N2O.  相似文献   

18.
The realization of a deep-blue-emitting exciplex system is a herculean task in the field of organic light-emitting diodes (OLEDs) on account of a large red-shifted and broadened exciplex emission spectrum in comparison to those of the corresponding single compounds. Herein, 2,5,8-tris(di(4-fluorophenyl)amine)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3FDPA) was designed as an electron acceptor by integrating three bis(4-fluorophenyl)amine groups into a heptazine core, while 1,3-di(9H-carbazol-9-yl)benzene (mCP) possessing two electron-donating carbazole moieties was chosen as the electron donor. Excitingly, the exciplex system of 8 wt% HAP-3FDPA:mCP exhibited deep-blue emission and a high photoluminescence quantum yield of 53.2%. More importantly, an OLED containing this exciplex system as an emitting layer showed deep-blue emission with Commission Internationale de l’Eclairage coordinates of (0.16, 0.12), a peak luminance of 15,148 cd m−2, and a rather high maximum external quantum efficiency of 10.2% along with a low roll-off. This study not only reports an efficient exciplex-based deep-blue emitter but also presents a feasible pathway to construct highly efficient deep-blue OLEDs based on exciplex systems.  相似文献   

19.
Kinetic studies of the singlet oxygenation of the title compounds were performed according to Monroe's method. The reaction rate increases with temperature decreasing, leading to a negative activation enthalpy and a large negative activation entropy. These data are interpreted as the evidence for the intermediacy of an exciplex. The solvent effect on the reaction rate suggests that the “dioxetane” path involves a transition state or an intermediate with significant zwitterionic character. The electronic effect of the substituent is obvious, with electron-withdrawing substituent retarding the reaction and electron-donating substituent increasing the reaction rate. However, steric bulkiness at the 6-position does not play an important role in the reaction rate.  相似文献   

20.
Absorption spectra and decay kinetics of the polar triplet exciplexes (contact radical-ion pairs) formed during quenching of the chloranil triplet state by trans- or cis-stilbenes in benzene with added acetonitrile and methanol, have been studied by laser flash photolysis. The exciplexes include cation-radicals of stilbene dimers, which are deactivated by reverse electron transfer within 10–50 nsec. The dynamics of the intercombination electron transfer and the exciplex dissociation into ion-radicals were determined. The isomerization of stilbene via triplet exciplex formation was not observed.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 117977. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 572–576, March, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号