首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of well-defined, air- and moisture-stable (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes has been used in several catalytic reactions: Suzuki-Miyaura cross-coupling, catalytic dehalogenation of aryl halides, and aryl amination. The scope of the three processes using various substrates was examined. A general system involving the use of (IPr)Pd(allyl)Cl as catalyst and NaO(t)Bu as base has proven to be highly active for the Suzuki-Miyaura cross-coupling of activated and unactivated aryl chlorides and bromides, for the catalytic dehalogenation of aryl chlorides, and for the catalytic aryl amination of aryl triflates. All reactions proceed in short reaction times and at mild temperatures. The system has also proven to be compatible with the microwave-assisted Suzuki-Miyaura cross-coupling and catalytic dehalogenation processes, affording yields similar to those of the conventionally heated analogous reactions.  相似文献   

2.
A straightforwardly synthesised complex, [Pd(micro-Cl)Cl(NHC)](2) (NHC = bis(2,6-diisopropylphenyl)imidazol-2-ylidene, IPr), has been employed to mediate Suzuki-Miyaura reactions involving aryl chlorides at very low catalyst loadings and at room temperature.  相似文献   

3.
A very straightforward synthesis of (IPr)Pd(acac)Cl from two commercially available starting materials, Pd(acac)2 and IPr.HCl [acac = acetylacetonate; IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene], has been developed. The resulting complex, (IPr)Pd(acac)Cl (1), has proven to be a highly active PdII precatalyst in the Buchwald-Hartwig and the alpha-ketone arylation reactions. A wide range of substrates has been screened, including unactivated, sterically hindered, and heterocyclic aryl chlorides.  相似文献   

4.
The use of second-generation [(NHC)Pd(R-allyl)Cl] complexes for Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions involving heteroaromatic halides at room temperature is reported. The first examples of room temperature Suzuki-Miyaura cross-coupling of deactivated aryl chlorides with alkenyl boronic acids are also disclosed. Terminal substitution at the allyl moiety of the palladium complex facilitates its activation at room temperature leading to very active catalytic species enabling the present catalytic transformations to be performed rapidly using very mild reaction conditions. Catalyst loadings can be as low as 10 ppm for the Buchwald-Hartwig aryl amination and 50 ppm for the Suzuki-Miyaura reaction.  相似文献   

5.
[reaction: see text] The activity of the complex (IPr)PdCl(eta2-N,C-C12H7NMe2), 1 [IPr = (N,N'-bis(2,6-diisopropylphenyl)imidazol)-2-ylidene], in the Suzuki-Miyaura cross-coupling reaction involving unactivated aryl chlorides and triflates with arylboronic acids at room temperature in technical grade 2-propanol is described. These conditions allow for the synthesis of di- and tri-ortho-substituted biaryls in very short reaction times. This complex also displays very high activity for alpha-ketone arylation and dehalogenation reactions of activated and unactivated aryl chlorides.  相似文献   

6.
A highly efficient cross-coupling of diarylborinic acids and anhydrides with aryl chlorides and bromides has been effected by using a palladium catalyst system co-supported by a strong σ-donor N-heterocyclic carbene (NHC), N,N'-bis(2,6-diisopropylphenyl) imidazol-2-ylidene, and a strong π-acceptor phosphite, triphenylphosphite, in tert-BuOH in the present of K(3)PO(4)·3H(2)O. Unsymmetrical biaryls with a variety of functional groups could be obtained in good to excellent yields using as low as 0.01, 0.2-0.5, and 1 mol % palladium loadings for aryl bromides and activated and deactivated aryl chlorides, respectively, under mild conditions. A ligand synergy between the σ-donor NHC and the π-acceptor phosphite in the Pd/NHC/P(OPh)(3) catalytic system has been proposed to be responsible for the high efficacy to arylchlorides in the cross-coupling. A scalable and economical process has therefore been developed for synthesis of Sartan biphenyl from the Pd/NHC/P(OPh)(3) catalyzed cross-coupling of di(4-methylphenyl)borinic acid with 2-chlorobenzonitrile.  相似文献   

7.
The preparation of a bimacrocyclic NHC palladium allyl complex 4 is described. The complex was obtained by transmetalation with allyl palladium chloride dimer from the NHC silver complex 2 in 85% yield. Complex 4 was fully characterized by spectroscopic methods and by single-crystal X-ray analysis. In a preliminary catalytic study, complex 4 showed high activity in the Suzuki-Miyaura cross-coupling of unactivated aryl chlorides and bromides with 1-naphthalene-boronic acid at low catalyst loading. Good results were also obtained in the Mizoroki-Heck reaction of aryl bromides with styrene, but a decrease in yield was observed when aryl chlorides were used.  相似文献   

8.
A high-yielding cross-coupling reaction of unactivated alkyl bromides possessing beta-hydrogens with alkylzinc halides utilizing a Pd/N-heterocyclic carbene (NHC) catalyst at room temperature is described. A variety of Pd sources, Pd2(dba)3, Pd(OAc)2, or PdBr2, with the commercially available ligand precursor 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (IPr.HCl) successfully coupled 1-bromo-3-phenylpropane with n-butylzinc bromide in THF/NMP. An investigation of different NHC precursors showed that the bulky 2,6-diisopropylphenyl moiety was necessary to achieve high coupling yields (75-85%). The corresponding ethyl analogue was moderately active (11%). A range of unsymmetrical NHC precursors were prepared and evaluated. The ligand precursor containing one 2,6-diisopropylphenyl and one 2,6-diethylphenyl afforded the coupling product in 47% yield, clearly suggesting a direct relationship between the steric topography created by the flanking N-substituents and catalyst activity. Under optimal conditions, a number of alkyl bromides and alkylzinc halides possessing common functional groups (amide, nitrile, ester, acetal, and alkyne) were effectively coupled (61-92%). It is noteworthy that beta-substituted alkyl bromides and alkylzinc halides successfully underwent cross-coupling. Also, under these conditions alkyl chlorides were unaffected.  相似文献   

9.
Nucleophilic N-heterocyclic carbenes have been conveniently used as catalyst modifiers in amination reactions involving aryl chlorides, aryl bromides, and aryl iodides with various nitrogen-containing substrates. The scope of a coupling process using a Pd(0) or Pd(II) source and an imidazolium salt in the presence of a base, KO(t)Bu or NaOH, was tested using various substrates. The Pd(2)(dba)(3)/IPr.HCl (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) system presents the highest activity with respect to electron-neutral and electron-rich aryl chlorides. The ligand is also effective for the synthesis of benzophenone imines, which can be easily converted to the corresponding primary amines by acid hydrolysis. Less reactive indoles were converted to N-aryl-substituted indoles using as supporting ligand the more donating SIPr.HCl (5, SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene). The Pd(OAc)(2)/SIPr.HCl/NaOH system is efficient for the N-arylation of diverse indoles with aryl bromides. The general protocol developed has been applied successfully to the synthesis of a key intermediate in the synthesis of an important new antibiotic. Mechanistically, palladium-to-ligand ratio studies strongly support an active species bearing one nucleophilic carbene ligand.  相似文献   

10.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

11.
The complex (IPr)Ni(allyl)Cl (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolidene) catalyzes the cross-coupling reactions of heteroaromatic chlorides with aryl Grignard reagents. Catalyst loadings as low as 0.1 mol % have been used to afford the products in excellent yields. This nickel-based catalytic system also promotes the activation of the C(Ar)-O bond of anisoles in the Kumada-Tamao-Corriu reaction under fairly mild conditions.  相似文献   

12.
Lee HM  Nolan SP 《Organic letters》2000,2(14):2053-2055
A combination of palladium acetate and the imidazolium salt IPr.HCl (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) has proven to be highly efficient in the cross coupling reactions of aryl bromides and electron-deficient aryl chlorides with phenyltrimethoxysilane or vinyltrimethoxysilane. The catalytic performance of this system was found to be comparable to that of systems using PCy(3) and P(o-tol)(3).  相似文献   

13.
The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.  相似文献   

14.
A very straightforward one-pot method has been developed for preparation of air-stable CpPd(NHC)Cl complexes 1a-d. This new class of well-defined NHC-Pd complexes exhibits high catalytic activity in Kumada-Tamao-Corriu cross-coupling reaction involving various aryl and heteroaryl chlorides. Notably, the less sterically encumbered NHC ligand around Pd centre showed higher catalytic activity.  相似文献   

15.
Novel Pd(II) mixed N,S-heterocyclic carbene (NSHC)-phosphine complexes of the general formula [PdBr(2)(NSHC)(PR(3))] were obtained from bridge cleavage of dinuclear NSHC complexes of type [PdBr(2)(NSHC)](2) [NSHC = 3-benzylbenzothiazolin-2-ylidene and 3-propylbenzothiazolin-2-ylidene] with triphenylphosphine, tricyclohexylphosphine and 2-diphenylphosphanyl-pyridine. All complexes have been fully characterized by (1)H and (13)C NMR spectroscopy, ESI mass spectrometry and elemental analysis. The X-ray crystal structures of complexes 3-8 are reported. The complexes exhibit moderate to good catalytic activity in the Suzuki-Miyaura coupling reaction of aryl bromides and chlorides.  相似文献   

16.
A variety of triazole-based monophosphines (ClickPhos) have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes. Their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides. Ligand 7i, which has a 2,6-dimethoxybenzene moiety, provided good results in Suzuki-Miyaura reaction to form hindered biaryls. A CAChe model for the Pd/7i complex shows that the likelihood of a Pd-arene interaction might be a rationale for its high catalytic reactivity.  相似文献   

17.
The use of an in situ generated Ni(0) catalyst associated with 2,2'-bipyridine or N,N'-bis(2,6-diisopropylphenyl)dihydroimidazol-2-ylidene (SIPr) as a ligand and NaO-t-Bu as the base for the intramolecular coupling of aryl chlorides with amines is described. The procedure has been applied to the formation of five-, six-, and seven-membered rings. [reaction: see text]  相似文献   

18.
A dramatic improvement of the catalytic activity was observed when a phosphine was added in allylic alkylation reactions catalyzed by (NHC)Pd(η3-C3H5)Cl complexes. Consequently, several palladium complexes, generated in situ from different NHC-silver complexes, [Pd(η3-C3H5)Cl]2 and PPh3, were tested in this reaction to evaluate their potential. High reaction rates and conversions could be obtained with this catalytic system in the alkylation of allylic acetates with dimethylmalonate, particularly under biphasic conditions using water/dichloromethane and KOH 1 M as the base. These conditions are experimentally more convenient and gave higher reaction rates than the classical anhydrous conditions (NaH/THF). In this system, the phosphine is essential since no conversion was obtained when it is not present. The steric hindrance of the carbene ligand has a great influence on the activity and the stability of the catalytic system. The best NHC ligands for this reaction are either 1-mesityl-3-methyl-imidazol-2-ylidene or 1-(2,6-diisopropylphenyl)-3-methyl-imidazol-2-ylidene which are less bulky among the NHC tested. These two ligands led in 5 min to a complete conversion at 20 °C. The Pd-catalyzed allylic amination reaction using (E)-1,3-diphenylprop-3-en-yl acetate and benzylamine was also tested with (NHC)(PPh3)Pd complexes and under the biphasic conditions. This reaction was found to be slower than the alkylation with dimethylmalonate but a complete conversion could be reached in 6 h at 20 °C using K2CO3 1 M as the base. NMR experiments indicated that mixed (NHC)(PPh3)Pd complexes are formed in situ but their structure could not be established exactly.  相似文献   

19.
Pd-N-heterocyclic carbene (NHC)-catalyzed Buchwald-Hartwig amination protocols mediated by Pd-PEPPSI precatalysts is described. These protocols provide access to a range of hindered and functionalized drug-like aryl amines in high yield with both electron-deficient and electron-rich aryl- and heteroaryl chlorides and bromides. Variations in solvent polarity, base and temperature are tolerated, enhancing the scope and utility of this protocol. A mechanistic rationalization for base strength (pKb) requirements is also provided.  相似文献   

20.
The preparation of two series of [Cu(NHC)2]X complexes (NHC=N-heterocyclic carbene, X=PF6 or BF4) in high yields from readily available materials is reported. These complexes have been spectroscopically and structurally characterized. The activity of these cationic bis-NHC complexes in the hydrosilylation of ketones was examined, and both the ligand and the counterion showed a significant influence on the catalytic performance. Moreover, when compared with related [Cu(NHC)]-based systems, these cationic complexes proved to be more efficient under similar reaction conditions. The activation step of [Cu(NHC)2]X precatalysts towards hydrosilylation was investigated by means of 1H NMR spectroscopy. Notably, it was shown that one of the N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) ligands in [Cu(IPr)2]BF4 is displaced by tBuO(-) in the presence of NaOtBu, producing the neutral [Cu(IPr)(OtBu)]. This copper alkoxide is known to be a direct precursor of an NHC-copper hydride, the actual active species in this transformation. Furthermore, reagent loading and counterion effects have been rationalized in light of the species formed during the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号