首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.  相似文献   

2.
Although it has been shown that the phase of the MR signal from the brain is particularly prone to variation due to respiration, the overall physiological information contained in phase time series is not well understood. Here, we explore the different physiological processes contributing to the phase time series noise, identify their spatiotemporal characteristics and examine their relationship to BOLD-related and non-BOLD-related physiological noise in the magnitude time series. This was performed by manipulating the contribution of physiological noise to the total signal variance by modulating the TE and voxel volume, and using a short TR in order to adequately sample physiological signal fluctuations. The phase and magnitude signals were compared both before and after removal of signal fluctuations at the primary respiratory and cardiac frequencies with RETROICOR. We found that the temporal phase noise increased with TE at a faster rate than predicted by 1/TSNR as a result of physiological noise. As suggested by previous studies, the primary contributor to phase physiological noise was respiration-related effects which were manifested at a large scale (>1 cm). Notably, RETROICOR removed respiration-related large-scale artifacts and this resulted in considerable improvements in the temporal phase stability (7–90%). Physiological noise in the magnitude time series after RETROICOR consisted of low-frequency BOLD-related fluctuations (<0.13 Hz) localized to gray matter and the vasculature, and fluctuations in the vasculature correlated with slow (<0.1 Hz) variations in respiration volume and cardiac rhythm. Physiological noise in the phase signal after RETROICOR also occurred in frequencies below 0.13 Hz and was consistent with (1) residual large-scale magneto-mechanical effects correlated with slow variations in respiration volume and cardiac rhythm over time, and (2) local scale (<1 cm) effects localized in gray matter and vasculature most likely due to vascular dephasing mediated by a BOLD susceptibility change. While BOLD-related magnitude noise exhibited a TE dependence similar to BOLD, the ‘BOLD-related’ noise in the phase data increased with increasing TE and thus caused the overall phase noise to increase at a faster rate with TE than predicted by 1/TSNR. Interestingly, the spatial specificity of this effect was more evident for the higher resolution phase data, as opposed to the magnitude data, suggesting that at a higher spatial resolution the phase signal may contain more information on physiological processes than the magnitude signal.  相似文献   

3.
Magnetic resonance imaging (MRI) scanners can produce noise measuring over 130 dB SPL. This noise stimulates the auditory nervous system, limiting the dynamic range for stimulus driven activity in functional MRI (fMRI) experiments and can influence other brain functions. Even for structural scans it causes subject anxiety and discomfort in addition to the impediment to communications. Here we describe the realization and validation of a sound system for sound presentation inside an MRI scanner and the modifications to a standard active noise control technique for use in the noisy and compact environment of the scanner. This paper provides a review of the technology available for the presentation of audio stimuli in an MRI environment and the modifications required for the active control of scanner noise. Some of the content has been previously published [Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR. Active control of the volume acquisition noise in functional magnetic resonance imaging: method and psychoacoustical evaluation. J Acoust Soc Am 2001;110(6):3041-54; Levitt H. Transformed up-down methods in psychoacoustics. J Acoust Soc Am 1971;49:467-77], but this paper goes further in describing the stages of development as the system performance was optimised. The performance of the system and both the objective and subjective reduction of the scanner noise are reported. Finally, we discuss recent improvements to the system that are currently being evaluated and describe the theory of opto-acoustical transducers that operate on the principle of light modulation. These are immune from, and do not create, electro-magnetic interference (EMI) and radio-frequency interference (RFI).  相似文献   

4.
5.
6.
Real-time functional magnetic resonance imaging: methods and applications   总被引:3,自引:0,他引:3  
Functional magnetic resonance imaging (fMRI) has been limited by time-consuming data analysis and a low signal-to-noise ratio, impeding online analysis. Recent advances in acquisition techniques, computational power and algorithms increased the sensitivity and speed of fMRI significantly, making real-time analysis and display of fMRI data feasible. So far, most reports have focused on the technical aspects of real-time fMRI (rtfMRI). Here, we provide an overview of the different major areas of applications that became possible with rtfMRI: online analysis of single-subject data provides immediate quality assurance and functional localizers guiding the main fMRI experiment or surgical interventions. In teaching, rtfMRI naturally combines all essential parts of a neuroimaging experiment, such as experimental design, data acquisition and analysis, while adding a high level of interactivity. Thus, the learning of essential knowledge required to conduct functional imaging experiments is facilitated. rtfMRI allows for brain-computer interfaces (BCI) with a high spatial and temporal resolution and whole-brain coverage. Recent studies have shown that such BCI can be used to provide online feedback of the blood-oxygen-level-dependent signal and to learn the self-regulation of local brain activity. Preliminary evidence suggests that this local self-regulation can be used as a new paradigm in cognitive neuroscience to study brain plasticity and the functional relevance of brain areas, even being potentially applicable for psychophysiological treatment.  相似文献   

7.
The generalized Kullback-Leibler distance Dq (q is the Tsallis parameter) is shown to be an useful measure for analysis of functional magnetic resonance imaging (fMRI) data series. This generalized form of entropy is used to evaluate the “distance” between the probability functions p1 and p2 of the signal levels related to periods of stimulus and non-stimulus in event-related fMRI experiments. The probability densities of the mean distance (averaged over the N epochs of the entire experiment) are obtained through numerical simulations for different values of signal-to-noise ratio (SNR) and found to be fitted very well by Gamma distributions (χ2<0.0008) for small values of N (N<30). These distributions allow us to determine the sensitivity and specificity of the method by construction of the receiver operating characteristic (ROC) curves. The performance of the method is also investigated in terms of the parameters q and L (number of signal levels) and our results indicate that the optimum choice is q=0.8 and L=3. The entropic index q is found to exert control on both sensitivity and specificity of the method. As q (q>0) is raised, sensitivity increases but specificity decreases. Finally, the method is applied in the analysis of a real event-related fMRI motor stimulus experiment and the resulting maps show activation in primary and secondary motor brain areas.  相似文献   

8.
In general, image analysis of cognitive experiments using functional magnetic resonance imaging techniques has emphasized those regions of the brain where increases in signal intensity, with regard to the reference state, are associated with activation. Nevertheless, a number of recent papers have shown that there are areas of deactivation as well. In this study, we have used a univariate analysis and echo-planar functional magnetic resonance imaging to address the relationship of the reference state to the deactivations. We employed two dichotomous covert tasks, orthographic lexical retrieval and pure visual retrieval, to contrast with the reference state (baseline) of silent counting. Our analysis yielded extensive, task-specific landscapes of regional incremental and decremental responses. We have specifically demonstrated that the decremental responses are not due to activation in the reference state. We have also demonstrated that they are not an artifact of a specific part of the image analysis, and propose that they represent a physiological, task specific signal that should be considered an integral component of neural networks representing brain function.  相似文献   

9.
Breast disease evaluation with fat-suppressed magnetic resonance imaging.   总被引:2,自引:0,他引:2  
Thirty patients with a variety of pathologically confirmed malignant and benign pathologic lesions of the breast were evaluated with a spectrally selective fat suppression imaging technique to obtain fat-suppressed images of the breast. The technique, a selective partial inversion-recovery (SPIR) method, demonstrated the architectural relationship of malignant and benign tumors with respect to the normal water-containing elements of the breast. These relationships included signs of advanced malignant disease such as tissue retraction, invasive growth, and multicentricity, which appeared on the fat-suppressed images. Fat-suppressed imaging provided useful information for assessing the breasts of both pre- and postmenopausal women, especially in the latter group, where fatty involution of the breast is common. Microcysts, which are normally not visualized by conventional methods, were demonstrated and associated with patients having confirmed fibrocystic disease of the breast. As expected, the SPIR technique did not improve the ability to distinguish between tissues having similar T1 and T2 relaxation time values, such as malignant tumors and normal breast parenchymal tissues. The technique was able to demonstrate that the intense lipid signal, known to be responsible for obscuring the borders of water-fat interfaces and small tumors, could be eliminated in a variety of pathological settings.  相似文献   

10.
The potential of spherical-harmonics beamforming (SHB) techniques for the auralization of target sound sources in a background noise was investigated and contrasted with traditional head-related transfer function (HRTF)-based binaural synthesis. A scaling of SHB was theoretically derived to estimate the free-field pressure at the center of a spherical microphone array and verified by comparing simulated frequency response functions with directly measured ones. The results show that there is good agreement in the frequency range of interest. A listening experiment was conducted to evaluate the auralization method subjectively. A set of ten environmental and product sounds were processed for headphone presentation in three different ways: (1) binaural synthesis using dummy head measurements, (2) the same with background noise, and (3) SHB of the noisy condition in combination with binaural synthesis. Two levels of background noise (62, 72 dB SPL) were used and two independent groups of subjects (N=14) evaluated either the loudness or annoyance of the processed sounds. The results indicate that SHB almost entirely restored the loudness (or annoyance) of the target sounds to unmasked levels, even when presented with background noise, and thus may be a useful tool to psychoacoustically analyze composite sources.  相似文献   

11.
Approaches were examined for reducing acoustic noise levels heard by subjects during functional magnetic resonance imaging (fMRI), a technique for localizing brain activation in humans. Specifically, it was examined whether a device for isolating the head and ear canal from sound (a "helmet") could add to the isolation provided by conventional hearing protection devices (i.e., earmuffs and earplugs). Both subjective attenuation (the difference in hearing threshold with versus without isolation devices in place) and objective attenuation (difference in ear-canal sound pressure) were measured. In the frequency range of the most intense fMRI noise (1-1.4 kHz), a helmet, earmuffs, and earplugs used together attenuated perceived sound by 55-63 dB, whereas the attenuation provided by the conventional devices alone was substantially less: 30-37 dB for earmuffs, 25-28 dB for earplugs, and 39-41 dB for earmuffs and earplugs used together. The data enabled the clarification of the relative importance of ear canal, head, and body conduction routes to the cochlea under different conditions: At low frequencies (< or =500 Hz), the ear canal was the dominant route of sound conduction to the cochlea for all of the device combinations considered. At higher frequencies (>500 Hz), the ear canal was the dominant route when either earmuffs or earplugs were worn. However, the dominant route of sound conduction was through the head when both earmuffs and earplugs were worn, through both ear canal and body when a helmet and earmuffs were worn, and through the body when a helmet, earmuffs, and earplugs were worn. It is estimated that a helmet, earmuffs, and earplugs together will reduce the most intense fMRI noise levels experienced by a subject to 60-65 dB SPL. Even greater reductions in noise should be achievable by isolating the body from the surrounding noise field.  相似文献   

12.
13.
In this paper, we review blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies addressing the neural correlates of touch, thermosensation, pain and the mechanisms of their cognitive modulation in healthy human subjects. There is evidence that fMRI signal changes can be elicited in the parietal cortex by stimulation of single mechanoceptive afferent fibers at suprathreshold intensities for conscious perception. Positive linear relationships between the amplitude or the spatial extents of BOLD fMRI signal changes, stimulus intensity and the perceived touch or pain intensity have been described in different brain areas. Some recent fMRI studies addressed the role of cortical areas in somatosensory perception by comparing the time course of cortical activity evoked by different kinds of stimuli with the temporal features of touch, heat or pain perception. Moreover, parametric single-trial functional MRI designs have been adopted in order to disentangle subprocesses within the nociceptive system.

Available evidence suggest that studies that combine fMRI with psychophysical methods may provide a valuable approach for understanding complex perceptual mechanisms and top-down modulation of the somatosensory system by cognitive factors specifically related to selective attention and to anticipation. The brain networks underlying somatosensory perception are complex and highly distributed. A deeper understanding of perceptual-related brain mechanisms therefore requires new approaches suited to investigate the spatial and temporal dynamics of activation in different brain regions and their functional interaction.  相似文献   


14.
李博  吴瑞琪  李安安  徐富强 《物理》2011,40(06):374-380
在人类的5种主要感觉中,嗅觉是最广泛、古老、直接和内在的感觉.这些特性使人们对人类嗅觉的研究异常艰难,以致于直到今天人们对嗅觉的功能仍不清楚,而对大脑的功能机制所知更少.与其他基于物理原理的方法一样,磁共振成像技术的广泛应用极大地推动了整个生命科学的发展.脑功能磁共振成像的优势(高分辨率、高对比度、无损性和无放射性等)为人们研究嗅觉高级中枢以及与嗅觉相关行为的脑机制等提供了强有力的技术手段.文章在简单介绍嗅觉知识的基础上,着重讨论了近十年来,脑功能磁共振成像技术在人类嗅觉研究中所取得的成果.  相似文献   

15.
脑功能磁共振成像在人类嗅觉研究中的应用   总被引:1,自引:0,他引:1  
在人类的5种主要感觉中,嗅觉是最广泛、古老、直接和内在的感觉.这些特性使人们对人类嗅觉的研究异常艰难,以致于直到今天人们对嗅觉的功能仍不清楚,而对大脑的功能机制所知更少.与其他基于物理原理的方法一样,磁共振成像技术的广泛应用极大地推动了整个生命科学的发展.脑功能磁共振成像的优势(高分辨率、高对比度、无损性和无放射性等)为人们研究嗅觉高级中枢以及与嗅觉相关行为的脑机制等提供了强有力的技术手段.文章在简单介绍嗅觉知识的基础上,着重讨论了近十年来,脑功能磁共振成像技术在人类嗅觉研究中所取得的成果.  相似文献   

16.
17.
方晟  吴文川  应葵  郭华* 《物理学报》2013,62(4):48702-048702
数据采集时间长是制约磁共振成像技术发展的重要瓶颈.为了解决这一问题, 本文基于压缩感知成像理论, 提出了一种结合非均匀螺旋线磁共振数据采集序列和布雷格曼迭代重建的快速磁共振成像方法, 通过欠采样缩短数据采集时间.欠采样引起混迭伪影则通过非均匀螺旋线欠采样特性和布雷格曼迭代重建去除.水模磁共振成像实验和在体磁共振成像实验结果表明: 欠采样情况下, 所提出的方法能有效去除欠采样导致的混迭伪影, 获得的图像结构信息完整的成像结果, 在缩短采样时间的同时, 具有较高的准确度. 关键词: 磁共振成像 非均匀螺旋线 全变分 布雷格曼迭代  相似文献   

18.
唐昕  洪礼明  俎栋林 《中国物理 B》2010,19(7):78702-078702
This paper presents an approach of active ferromagnetic shimming for C-type permanent magnetic resonance imaging (MRI) magnet.It is designed to reduce inhomogeneity of magnetostatic field of C-type permanent magnet to meet the stringent requirement for MRI applications.An optimal configuration (locations and thicknesses) of active ferromagnetic pieces is generated through calculation according to the initial field map and the demanded final homogeneity specifications.This approach uses a minimisation technique which makes the sum of squared magnetic moment minimum to restrict the amount of the active ferromagnetic material used and the maximal thickness of pieces stacked at each hole location in the shimming boards.Simulation and experimental results verify that the method is valid and efficient.  相似文献   

19.
This prospective multi-center study aimed to evaluate the inter-vendor and test-retest reliabilities of resting-state functional magnetic resonance imaging (RS-fMRI) by assessing the temporal signal-to-noise ratio (tSNR) and functional connectivity. Study included 10 healthy subjects and each subject was scanned using three 3 T MR scanners (GE Signa HDxt, Siemens Skyra, and Philips Achieva) in two sessions. The tSNR was calculated from the time course data. Inter-vendor and test-retest reliabilities were assessed with intra-class correlation coefficients (ICCs) derived from variant component analysis. Independent component analysis was performed to identify the connectivity of the default-mode network (DMN). In result, the tSNR for the DMN was not significantly different among the GE, Philips, and Siemens scanners (P = 0.638). In terms of vendor differences, the inter-vendor reliability was good (ICC = 0.774). Regarding the test-retest reliability, the GE scanner showed excellent correlation (ICC = 0.961), while the Philips (ICC = 0.671) and Siemens (ICC = 0.726) scanners showed relatively good correlation. The DMN pattern of the subjects between the two sessions for each scanner and between three scanners showed the identical patterns of functional connectivity. The inter-vendor and test-retest reliabilities of RS-fMRI using different 3 T MR scanners are good. Thus, we suggest that RS-fMRI could be used in multicenter imaging studies as a reliable imaging marker.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号