首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a simple and rapid method for the simultaneous determination of phosphorus-containing amino acid herbicides (glyphosate, glufosinate, bialaphos) and their major metabolites, aminomethylphosphonic acid (AMPA) and 3-methylphosphinicopropionic acid (MPPA), in human serum. Serum samples were filtrated through an ultrafiltration membrane to remove proteins. The filtrate was then washed with chloroform, and injected into a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Chromatographic separation was achieved on a hydrophilic interaction chromatography (HILIC) column. Determination of the target herbicides and metabolites was successfully carried out without derivatization or solid phase extraction (SPE) cartridge clean-up. The recoveries of these compounds, added to human serum at 0.2μg/mL, ranged from 94% to 108%, and the relative standard deviations (RSDs) were within 5.9%. The limits of detection (LODs) were 0.01μg/mL for MPPA, 0.02μg/mL for AMPA, 0.03μg/mL for both glyphosate and glufosinate, and 0.07μg/mL for bialaphos, respectively.  相似文献   

2.
建立了一种非衍生化高效液相色谱-串联质谱快速检测生物体液中草甘膦、草铵膦及其代谢物等8种极性农药的方法。8种极性农药经Metrosep A Supp 5阴离子色谱柱(150 mm×4.0 mm,5μm)分离,以纯水-200 mmol/L碳酸氢铵溶液(含0.1%氨水)为流动相进行梯度洗脱,负离子多反应监测(MRM)模式进行检测。实验结果表明,8种极性农药在0.5~50 ng/mL范围内线性关系良好(r2>0.99),检出限(S/N≥3)为0.08~0.3 ng/mL,定量下限(S/N≥10)为0.3~1 ng/mL。方法的基质效应为86.5%~106%,目标化合物的回收率为81.5%~114%,日内相对标准偏差(RSD)为0.30%~2.8%,日间RSD为0.50%~5.3%。该方法无需复杂的衍生化过程,简便快速、灵敏度高、稳定性好,适用于生物体液中8种极性农药的检测。  相似文献   

3.
A capillary electrophoresis (CE)-indirect fluorescence detection method is described for the simultaneous determination of glufosinate, glyphosate and aminomethylphosphonic acid. The three analytes were separated by CE in 5 min with a 1 mM fluorescein solution at pH 9.5. Fluorescein also functioned as a background fluorophore for the indirect detection of these nonfluorescent species. Linearity of more than two orders of magnitudes was generally obtained. The concentration limits of detection were in the microM range. Precisions of migration times and peak areas were less than 1.7% and 7.4%, respectively. Quantitation of glyphosate and glufosinate in commercial herbicides is demonstrated. In addition, the applicability of the method for the analysis of ground water was examined.  相似文献   

4.
A novel magnetic metal‐organic framework composite was prepared by a self‐assembly approach. The material properties were characterized by Fourier‐transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetry and differential thermogravimetric analysis, and X‐photoelectron spectroscopy. Then, the as‐prepared material was used as an adsorbent and indicated great enrichment ability toward glyphosate, glufosinate, bialaphos, and their main metabolites aminomethylphosphonic acid and 3‐methylphosphinicopropionic acid. Based on this, an efficient magnetic solid‐phase extraction method combined with ultra high performance liquid chromatography with high‐resolution mass spectrometry for the pretreatment and determination of five target compounds in environmental waters was established. Parameters that could impact on the adsorption performance had been studied in detail. The proposed method was successfully applied for the simultaneous determination of glyphosate, glufosinate, bialaphos, and their main metabolites aminomethylphosphonic acid and 3‐methylphosphinicopropionic acid in environmental water with recoveries in range of 86.2–104.6% with relative standard deviations less than 10%. Desired linearity was achieved varying from 1 to 100 μg/L for five target analytes, respectively. The limits of detection were between 0.01 and 0.03 μg/L.  相似文献   

5.
A rapid, specific, and sensitive method for the simultaneous quantitation of organophosphates (fenitrothion (MEP), malathion, and phenthoate (PAP)), glufosinate (GLUF), and glyphosate (GLYP) in human serum and urine by gas chromatography-mass spectrometry (GC-MS) has been validated. All of the targeted compounds together with the internal standard were extracted from the serum and urine using a mix-mode TiO-C(18) monolithic spin column. The recovery of organophosphates from serum and urine ranged from 12.7 to 49.5%. The recovery of GLUF and GLYP from serum and urine ranged from 1.9 to 7.9%. The intra- and inter-accuracy and precision (expressed as relative standard deviation, %RSD) were within 96.7-107.7% and 4.0-13.8%, respectively. The detection and quantitation limits for serum and urine were 0.1 and 0.1 μg/ml, respectively, for organophosphates, 0.1 and 0.5 μg/ml, respectively for GLUF and GLYP. The method had linear calibration curves ranging from 0.1 to 25.0 μg/ml for organophosphates and 0.5-100.0 μg/ml for GLUF, and GLYP. The validated method was successfully applied to a clinical GLYP poisoning case.  相似文献   

6.
曹丽伟  梁丝柳  谭小芳  孟建新 《色谱》2012,30(12):1295-1300
建立了一种快速、有效的毛细管电泳分离-激光诱导荧光检测有机磷除草剂草甘膦、草胺膦和草甘膦的代谢物氨甲基膦酸的方法。将荧光衍生试剂5-(4, 6-二氯三嗪基)氨基荧光素(DTAF)成功用于衍生上述3种化合物。最佳衍生条件: DTAF的浓度为1.0 μmol/L,以50 mmol/L硼酸(pH 9.5)作为缓冲溶液,在30 ℃下反应40 min。以pH 9.5的30 mmol/L硼酸缓冲溶液(含15 mmol/L Brij-35)作为电泳背景电解质,3种衍生物得到基线分离。在优化的条件下,草甘膦、草胺膦、氨甲基膦酸的检出限分别为3.21、6.14和1.99 ng/kg。将该方法应用于环境水样和土壤中除草剂及代谢物的测定,回收率为91.3%~106.0%。该方法准确、灵敏,可满足环境样品中有机磷农药及其代谢物残留的检测要求。  相似文献   

7.
Analysing herbicides in soil is a complex issue that needs validation and optimization of existing methods. An extraction and analysis method was developed to assess concentrations of glyphosate, glufosinate and aminomethylphophonic acid (AMPA) in field soil samples. After testing extractions by accelerated solvent extraction and ultrasonic extraction, agitation was selected with the best recoveries. Water was preferred as solvent extraction because it resulted in a cleaner chromatogram with fewer impurities than was the case with alkaline solvents. Analysis was performed by FMOC pre-column derivatization followed by high-performance liquid chromatography (HPLC) on a 300 mm C(18) column which permitted enhanced separation and sensitivity than a 250 mm C(18) column and increased resistance than the NH(2) column for soil samples. This extraction and analysis method allowing a minimum of steps before the injection in the HPLC with fluorescence detection is efficient and sensitive for a clay-loamy soil with detection limits of 103 μg kg(-1) for glyphosate, 15 μg kg(-1) for glufosinate and 16 μg kg(-1) for AMPA in soil samples.  相似文献   

8.
Molina M  Silva M 《Electrophoresis》2002,23(7-8):1096-1103
The analytical potential of three fluorescein analogues, fluorescein isothiocyanate isomer I (FITC), 5-(4,6-dichlorotriazinylamino) fluorescein (DTAF) and 5(6)-carboxyfluorescein N-succinimidyl ester (CFSE), as labelling reagents for the ultrasensitive determination of phosphorus-containing amino acid herbicides (glufosinate and glyphosate) and aminomethylphosphonic acid (the major metabolite of glyphosate) by nonionic surfactant micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was investigated. Practical aspects related to label chemistry and MEKC separation showed that DTAF is the best choice for the determination of these herbicides; in addition, the most important features of these reagents for the derivatization of amino compounds are discussed. The optimum procedure includes a derivatization step of the herbicides at 40 degrees C with DTAF for 1 h and a 2-fold dilution prior to MEKC analysis, which is conducted within about 10 min using Brij-35 in the running buffer. This nonionic surfactant improves the selectivity and therefore the sensitivity of the method at low analyte concentrations by shifting the interfering peaks of the DTAF excess. The lowest detectable analyte concentration ranged from 0.06 to 0.16 microg/L with a precision of 2.1-3.2%. These results indicate that nonionic surfactant MEKC-LIF is useful as a selective, rapid and sensitive tool for the determination of these herbicides showing a great potential for their analysis in environmental samples without previous enrichment steps. The proposed method surpasses other chromatographic alternatives in terms of limit of detection and sample requirements for the analysis.  相似文献   

9.
建立了一种梯度洗脱-电导抑制-离子色谱同时测定4种强极性农药的方法.通过对淋洗液及浓度、色谱柱、柱温、进样量等条件的优化,得到最佳检测条件:色谱柱为IonPac AS11-HC分析柱及IonPac AG11-HC保护柱,柱温33℃,进样量50μL,RFIC系统的淋洗液自动发生器在线产生的KOH作为淋洗液,梯度洗脱,淋洗...  相似文献   

10.
This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water.  相似文献   

11.
The paper presents the application of pre-chromatographic derivatisation reaction of aminophosphonic acids (glyphosate and glufosinate) with phenylisothiocyanate in thin-layer chromatography (TLC). Silica gel as stationary phase and a mixture of methanol–water–diethyl ether (2:1:1, v/v/v) and ethanol–water–diethyl ether (4:1:2, v/v/v) were used as the mobile phase, respectively. Detection was performed by spraying TLC plates with a freshly prepared mixture of sodium azide (1%), starch solution (1% for glyphosate and 2% for glufosinate), and potassium iodide (1.0 × 10–2 mol L?1) adjusted to pH 6.0 and exposed to iodine vapour for 15 s. Both glyphosate and glufosinate as phenylthiocarbamates (PTC-derivatives) were visible as white spots against a violet background which were converted into chromatograms using TLSee software. The calibration curves for glyphosate and glufosinate were within the ranges of 8.45–84.5 ng and 1.98–79.2 ng per spot, respectively. The limits of detection and quantification for glyphosate were at a level of 4 and 8.45 ng per spot, and for glufosinate were 0.99 and 1.78 ng per spot, respectively. The proposed method was successfully used in the determination of aminophosphonic acids in spiked plants samples.  相似文献   

12.
This paper describes a method for the sensitive and selective determination of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) residues in water and soil samples. The method involves a derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the case of water samples a volume of 10 mL was derivatized and then 4.3 mL of the derivatized mixture was directly injected in an on-line solid phase extraction (SPE)-LC-MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column. Soil samples were firstly extracted with potassium hydroxide. After that, the aqueous extract was 10-fold diluted with water and 2 mL were derivatized. Then, 50 microL of the derivatized 10-fold diluted extract were injected into the LC-MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at 50 and 500 ng/L, and also in soil samples, spiked at 0.05 and 0.5 mg/kg. In water samples, the mean recovery values ranged from 89 to 106% for glyphosate (RSD <9%), from 97 to 116% for AMPA (RSD < 10%), and from 72 to 88% in the case of glufosinate (RSD < 12%). Regarding soil samples, the mean recovery values ranged from 90 to 92% for glyphosate (RSD <7%), from 88 to 89% for AMPA (RSD <5%) and from 83 to 86% for glufosinate (RSD <6%). Limits of quantification for all the three compounds were 50 ng/L and 0.05 mg/kg in water and soil, respectively, with limits of detection as low as 5 ng/L, in water, and 5 microg/kg, in soil. The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA, while it was not efficient for glufosinate, that was quantified by external standards calibration. The method developed has been applied to the determination of these compounds in real water and soil samples from different areas. All the detections were confirmed by acquiring two transitions for each compound.  相似文献   

13.
Hu Z  Ye M  Pan G  Zhang T  Zhong N 《色谱》2012,30(4):391-394
建立了一种抑制电导检测-离子色谱(IC)同时测定草甘膦生产工艺中母液里的草甘膦及其副产物、无机阴离子的方法。样品经过滤后直接进样,色谱条件: IonPac AS11-HC分离柱(250 mm×4 mm)和IonPac AG11-HC保护柱(50 mm×4 mm),在线淋洗液发生器KOH梯度淋洗,流速1.0 mL/min,采用抑制电导检测。草甘膦、甲基草甘膦、六甲基磷酰三胺(HMPA)、增甘膦、亚磷酸、磷酸、Cl~和SO2~4的线性范围分别为0.1~20 mg/L、0.1~20 mg/L、0.1~50 mg/L、0.25~50 mg/L、0.05~20 mg/L、0.2~50 mg/L、0.02~20 mg/L和0.05~50 mg/L,相关系数分别为0.9995、0.9993、0.9999、0.9998、0.9999、0.9985、0.9999和0.9980,加标回收率为93.7%~104.0%,相对标准偏差均小于2.5% (n=7),检出限(以信噪比(S/N)=3计)为0.002~0.025 mg/L。该方法用于草甘膦生产工艺中母液里草甘膦及其含磷副产物和无机阴离子的测定,结果令人满意。  相似文献   

14.
Eremin SA  Laassis B  Aaron JJ 《Talanta》1996,43(3):295-301
A room temperature photochemically-induced fluorescence (RTPF) method is proposed for the quantitative analysis of seven widely-used chlorophenoxyacid herbicides. The influence of organic solvent, pH (in aqueous solutions), methanol percentage, and UV irradiation time on the excitation and emission wavelengths and fluorescence intensity was investigated. It was found that the largest fluorescence signals were obtained in a mixture of methanol and pH 5 buffer (50/50, v/v), while organic solvents and water produced generally lower signals. The tri- and bichlorinated phenoxyacid herbicides were photolysed significantly more slowly than the monochlorinated derivatives, and the derivatives of 2-propionic acid were photodegraded more quickly than the corresponding derivatives of acetic and butyric acid. Selected UV irradiation times were found to be 15 min for all herbicides under study. Linear calibration graphs were established over about one to two orders of magnitude in the interval 0.1-10 mug ml(-1). The RTPF limits of detection were between 36 ng ml(-1) and 179 ng ml(-1), according to the compound. Analytical application of RTPF to river water samples containing chlorophenoxyacid herbicides is discussed.  相似文献   

15.
The potential of capillary electrophoresis combined with mass spectrometry for the simultaneous determination of two herbicides (glyphosate and glufosinate) and their metabolites (aminomethylphosphonic acid and methylphosphinicopropionic acid) as the native species is demonstrated utilising a simple microelectrospray interface. The interface uses the voltage applied to the CE capillary to drive separation and generate the electrospray, avoiding sample dilution associated with the use of a sheath liquid interface. The chemistry of the internal walls of the capillary has a marked influence on peak shape, and appropriate choice is essential to successful operation of the interface. A linear polyacrylamide coated capillary, which has no electroosmotic flow, gave best reproducibility, with precision of migration time and peak area in the range 1-2 and 7-12% RSD, respectively, for the four analytes. Limits of detection, low-pg on-column, are substantially better than for previous methods and calibration curves over the range 1-100 microM have R2 values greater than 0.97. The observed concentration limit of detection for glyphosate in water is 1 microM and for a water-acetone extract of wheat is 2.5 microM, allowing the underivatised herbicide to be detected at 10% of the maximum residue limit in wheat.  相似文献   

16.
A capillary electrophoresis (CE) with UV absorption detection method is described for the simultaneous determination of glufosinate, glyphosate, and aminomethylphosphoric acid. The 9‐fluorenylmethyl chloroformate (FMOC‐Cl) was used for precolumn derivatization of the non‐absorbing herbicides. The three analytes were separated by CE in 9 min with 25 mM borate buffer at pH 9, followed by detection with a UV detector at 260 nm. We demonstrate how the detection limit can be enhanced by using acetonitrile‐salt mixtures. With acetonitrile‐salt mixtures, the limit of detection (LOD) was in the 10?7 M range. Linearity of more than two orders of magnitude was generally obtained. Precisions of migration times and peak areas were less than 0.9% and 7.5%, respectively. The applicabilities of the method for the analysis of ground water and lake water were examined.  相似文献   

17.
For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation‐exchange resin. In summary, the cleanup procedure with cation‐exchange resin developed in this study avoids interactions as described above and is applicable to calcium‐rich drinking water samples. After derivatization with 9‐fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real‐world drinking water samples of 98±9, 100±16 and 101±11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.  相似文献   

18.
Orejuela E  Silva M 《Electrophoresis》2005,26(23):4478-4485
A straightforward and sensitive method has been developed for the analysis of phosphorus-containing amino acid herbicides (glufosinate and aminomethylphosphonic acid, the major metabolite of glyphosate) in soil samples. For this purpose, the analytical features of two indocyanine fluorescent dyes, sulfoindocyanine succinimidyl ester (Cy5) and 1-ethyl-1-[5-(N-succinimidyl-oxycarbonyl)pentyl]-3,3,3,3-tetramethyl-indodicarbocyanine chloride, as labeling reagents for the determination of these herbicides by CZE with diode LIF detection were investigated. Practical aspects related to the labeling chemistry and CZE separation showed that the two probes behave similarly, Cy5 being the best choice for the determination of these herbicides on account of its higher sensitivity. The optimum procedure includes a derivatization step of the pesticides at 25 degrees C for 30 min and direct injection to CZE analysis, which is conducted within about 14 min using ACN in the running buffer. The lowest detectable analyte concentration ranged from 0.025 to 0.18 microg/L with a precision of 3.6-5.4%. These results indicate that indocyanine fluorescence dyes are useful as rapid and sensitive labels for the determination of these herbicides when compared with typical fluorescein dyes such as FITC and 5-(4,6-dichloro-s-triazin-2-ylamino) fluorescein, because they provide faster labeling reactions even at room temperature and the excess of reagent practically does not interfere the determination. Finally, the Cy5 method was successfully applied to soil samples without a preliminary clean-up procedure, and the herbicides were measured without any interference from coexisting substances. The recoveries of these compounds in these samples at fortification levels of 100-500 ng/g were 90-93%.  相似文献   

19.
Molina M  Silva M 《Electrophoresis》2001,22(6):1175-1181
The potential of micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection for the separation and determination of phosphorus-containing amino acid-herbicides (glufosinate and glyphosate), and aminomethylphosphonic acid (the major metabolite of glyphosate), involving derivatization with fluorescein isothiocyanate (FITC) isomer I, was investigated. Different variables that affect derivatization (pH, FITC concentration, time and temperature) and separation (pH and concentration of the buffer, kind and concentration of surfactants and applied voltage) were studied. The analysis was conducted within about 8 min and the use of the nonionic surfactant Triton X-100 improved the selectivity, thus indirectly enhancing sensitivity by shifting of the interfering peaks of the FITC excess. Dynamic ranges of 2.0-3,000 microg/L, limits of detection at microgram or submicrogram-per-liter level, and relative standard deviations from 4.7 to 6.4% were obtained. The ensuing method--nonionic surfactant MEKC-- is a useful choice for the determination of these herbicides as it provides limits of detection similar or lower than those reported by existing chromatographic alternatives without the use of an additional preconcentration technique such as solid-phase extraction. The separation of a mixture of nine FITC-derivatized amino acids, selected as target compounds, was also carried out to assess the discrimination power of the nonionic surfactant MEKC method for the analysis of closely related anionic analytes.  相似文献   

20.
A comprehensive view on the possibilities of the most recently developed chromatographic methods and emerging techniques in the analysis of pesticides glyphosate, glufosinate, bialaphos and their metabolites is presented. The state-of-the-art of the individual pre-treatment steps (extraction, pre-concentration, clean-up, separation, quantification) of the employed analytical methods for this group of chemicals is reviewed. The advantages and drawbacks of the described analytical methods are discussed and the present status and future trends are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号