首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The M3–VV Auger-photoelectron coincidence spectroscopy (APECS) spectrum of Cu(100) and the L3–VV APECS spectra of Cu metal and CuOx/Cu surface are analyzed in detail. The narrowing and energy shift of the photoelectron line in the M3–VV APECS spectrum is well predicted by the present theory. The spectrum shows the presence of the M2–M3(V)–VV(V) decay in which a hole in the 4s band hops away prior to the decay of M3 hole. The analysis of the L3 photoelectron spectra of Cu metal measured in coincidence with the 3F or 1G Auger line raises a question concerning the presence of two different core–hole states upon the L3 level ionization recently proposed by Thurgate and Jiang [Surf. Sci. 466 (2000) L807]. The analysis of the L3–VV APECS spectrum of CuOx/Cu shows that the final-state charge–transfer interaction plays an important role in CuO.  相似文献   

2.
The self-deconvolution of L23VV Auger spectra of SiO2 and Al2O3 has been carried out. The transition density functions obtained are compared with the local density of states (LDOS) of the valence band near the surface, as given by other techniques (XPS, UPS, XES) and also by theory. A fair agreement in the number and peak positions of valence band is produced. These compounds with MgO constitute an oxide series of increasing ionicity and the effects of initial hole localization in the transition density function are discussed.  相似文献   

3.
Electronic life-time and surface effects on the L23 VV Auger spectrum of Al have been calculated. The resulting spectrum predicts a low energy secondary peak due to plasmon excitation and shows good agreement with experiment at the main peak region.  相似文献   

4.
A theoretical model is proposed on how a Si dangling bond associated with an oxygen vacancy on a SiO2 surface (Es′ center) should be observed by Auger electron spectroscopy (AES). The Auger electron distribution NA(E) for the L23VV transition band is calculated for a stoichiometric SiO2 surface, and for a SiOx surface containing Si-(e?O3) coordinations. The latter is characterized by an additional L23VD transition band, where D is the energy level of the unpaired electron e?. The theoretical NA(E) spectra are compared with experimental N(E) spectra for a pristine, and for an electron radiation damaged quartz surface. Agreement with the theoretical model is obtained if D is assumed to lie ≈2 eV below the conduction band edge. This result shows that AES is uniquely useful in revealing the absolute energy level of localized, occupied surface defect states. As the L23VD transition band (main peak at 86 eV) cannot unambiguously be distinguished from a SiSi4 coordination L23VV spectrum (main peak at 88 eV), supporting evidence is presented as to why we exclude a SiSi4 coordination for our particular experimental example. Application of the Si-(e?O3) model to the interpretation of SiO2Si interface Auger spectra is also discussed.  相似文献   

5.
We provide an answer to the question why the L3 photoelectron line of Cu metal measured in coincidence with the L3–VV (3F or 1G) Auger-electron line, does not line up with the L3 single photoelectron line. We provide also an answer to the question why the L3 coincidence photoelectron line is unshifted when the Auger-electron analyzer is moved away from the Auger-electron line. We show that it is the initial core–hole self-energy by the monopole excitation (screening) and the density of final states which play an important role in the shift and narrowing of Auger-photoelectron coincidence spectroscopy (APECS) spectral line. To explain the shifted APECS spectral line, Thurgate and Jiang (Surf. Sci. 466 (2000) L807) recently proposed the presence of two different core–hole states in the main-line state upon the L3 level ionization in Cu metal. However, their explanation appears to be incorrect.  相似文献   

6.
The correlation between the line shape of Auger peaks and the density of states near the surface has been the subject of recent controversy. In certain cases, it has been possible to obtain the density of states by numerical deconvolution of a KVV peak (Amelio, 1970) or directly using a KLV peak (Cardona et al., 1973). However, the extension of this technique to transition metals (Cu, Zn) has encountered serious difficulties, related to the perturbation created by the presence of localized charges either in the initial or in the final state, although it is not yet clear why this perturbation is strong only in certain cases. The purpose of the present communication is to show a series of results that can throw some light on the abovementioned problem. The main point is that Auger processes of interatomic type, as those occurring in the INS technique of Hagstrum, are free of these perturbations. Recently, the authors have studied the line shape of the Auger peaks of O, C, N and S adsorbed on Cu, Ni and Fe. These results show that only that part of the Auger structure originated by interatomic transitions between substrate and adsorbate atoms can be related to the local density of states (LDOS). The rest of the structure, due to normal intraatomic processes, is dominated by the spectral terms in the final configuration of the ion. This new interpretation allows a separation of perturbation effects and clarifies the contribution of the LDOS to the peak line shape. In this communication, we present the line shape analysis of the L2,3 VV and KVV Auger peaks of Mg and O in MgO. Due to the strong ionic character of this compound, the L2,3 VV peak of Mg++ is mainly due to interatomic processes between Mg++ and O= ions, whereas the KVV peak of O is mainly due to interatomic processes. This analysis shows that good agreement exists between the L2,3VV Mg++ Auger peak and the self-convolution of MgO density of states, whereas the KVV Auger peak of O= is dominated by the spectral terms of the final configuration. Only a small peak in the high energy side of the latter peak can be related to the density of states and could be interpreted as an interatomic transition between two neighboring oxygen ions, in agreement with the interpretation given by others.  相似文献   

7.
The energy distributions N(E) of secondary electrons emitted from GaP and InP samples bombarded with 40 keV Ar+ ions have been studied by a retarding potential method and an electronic derivation. The spectra show beyond an intensive peak developed at 2 eV, a detailed spectrum between 80 and 140 eV. The analysis of this spectrum reveales Auger electrons corresponding to L23(P) VV and L23MIV–V(Ga) V [or L23(P) NIV-V(In) V] transitions; moreover, peaks due to plasmon excitations and d band excitations can be distinguished.  相似文献   

8.
Oxygen adsorption on the Si(110) surface has been studied by Auger electron spectroscopy. For a clean annealed surface chemisorption occurs, with an initial sticking probability of ~6 × 10?3. In this case the oxygen okll signal saturates and no formation of SiO2 can be detected from an analysis of the Si L2,3VV lineshape. With electron impact on the surface during oxygen exposure much larger quantities are adsorbed with the formation of an SiO2 surface layer. This increased reactivity towards oxygen is due to either a direct effect of the electron beam or to a combined action of the beam with residual CO during oxygen inlet, which creates reactive carbon centers on the surface. Thus in the presence of an electron beam on the surface separate exosures to CO showed adsorption of C and O. For this surface subsequent exposure in the absence of the electron beam resulted in additional oxygen adsorption and formation of SiO2. No adsorption of CO could be detected without electron impact. The changes in surface chemistry with adsorption are detectable from the Si L2,3VV Auger spectrum. Assignments can be made of two main features in the spectra, relating to surface and bulk contributions to the density of states in the valence band.  相似文献   

9.
The electron energy loss spectra associated with N23-excitation and the low energy N23VV Auger emission have been studied for both the clean and oxygen exposed zirconium. In the high energy side of the N23VV Auger spectrum, autoionization emission of electrons of the valence band due to the decay of 4p electrons excited to states ≈9eV above the Fermi level has been identified. The excitation process can be also observed in the electron energy loss spectra. This is the first time that an autoionization feature is observed in a electron excited Auger spectrum of a 4d transition metal.  相似文献   

10.
The many-body effect in the L3-M23M23 Auger-electron spectroscopy (AES) spectrum of metallic Zn is discussed. The lifetime width and residual relaxation energy shift of the two M23-hole state are governed by the (super) Coster-Kronig (sCK) transitions of two M23-hole state. The residual relaxation energy shift and decay width of the two M23-hole state are calculated in an average configuration by an ab initio atomic many-body theory. The agreement with experiment is good. To elucidate the many-body effect in the two-hole states, it is necessary to be able to discriminate individual components of the multiplet-split AES spectrum. We discuss how to discriminate individual components of the multiplet-split L3-M23M23 AES spectrum of metallic Zn by angle-resolved Auger-photoelectron coincidence spectroscopy (AR-APECS) in order to determine accurately their line shapes, multiplet splitting energies, and spin states (singlet etc.).  相似文献   

11.
An attempt is presented to understand the details of the lineshape of the Si L2,3 VV Auger spectrum from the (111) surface in the 7 × 7 superstructure. In the experiments we have followed the variation of the lineshape induced by adsorption of O2, H2O, CO and by bombardment with 3 keV Ar+ ions, over a range from a small perturbation of the surface to major changes in surface structure. For small perturbations from the clean surface we were able to resolve changes in the local density of states at surface silicon atoms. By unfolding the experimental spectra, effective transition densities of states result, which compare quite closely with calculated densities of states, apart from a certain enhancement of surface features in the experiments. All peaks in the experimental spectra can be explained, based on densities of states at the surface of pure Si(111) (7 × 7) (91.8 and 84.8 eV), Si(111) + adsorbed oxygen (70.6 eV), SiO2, (78.9 and 64.5 eV) and plasmon losses, at 71.0 and 57.5 eV for the clean surface.  相似文献   

12.
Summary We present a theoretical study of two infinite wires of Si with a different lateral size. The analysis is based on the linear muffin tin orbitals method in the atomic sphere approximation (LMTO-ASA). We consider free, partially and totally H-covered [001] Si quantum wires with rectangular cross-section. The results of this investigation prove the quantum wire nature of porous Si and interpret many of its physical features. In particular we show thata) as expected quantum confinement originates the opening of the LDA gap;b) the gap opening effect is asymmetric: 1/3 of the widening is in the valence band, while 2/3 in the conduction band;c) the near band gap states originate from Si atoms located at the center of the wire;d) the confinement is enhanced in the case of free surfaces;e) the imaginary part of the dielectric function shows a low-energy side structure strongly anisotropic, identified as responsible of the luminescence transition;f) the presence of dangling bonds destroys the luminescence properties;g) in spite of featurec), all Si atoms are collectively involved in the luminescence transition;h) the shift detected by the Si L2, 3VV Auger signal is due to H-interaction effect and is not a measure of the quantum confinement effect;i) the Si atoms probed by the Si L2, 3VV Auger are bonded with H and H2. Paper presented at the III INSEL (Incontro Nazionale sul Silicio Emettitore di Luce), Torino, 12–13 October 1995.  相似文献   

13.
Thin layers of a hydrogenated amorphous silicon were studied by means of the Auger electron spectroscopy (AES). It was found that the spectra of the a-Si : H samples exhibit a large peak at 34 eV which was ascribed to the L1L23V Coster-Kronig transition and that the intensity of the L23VV transition was lowered, due to hydrogenation. The explanation of this feature is given on the basis of the electronic structure and the transition probabilities changes in silicon, due to hydrogenation. The results on the a-Si : H layer were compared with measurement of the a-Si layer and the influence of an electron and an ion bombardment, an elevated temperature and an exposure to oxygen on both layers was studied.The author would like to expres hiss thanks to Dr. J. Zemek for supplying the a-Si and a-Si : H layers, to Dr. J. Drahokoupil and Dr. J. imnek for stimulating discussions and to Dr. V. Cháb for helpful discussions and for his help with measurements.  相似文献   

14.
The L23 Mg and L23 Al Auger spectra excited by helium-ion bombardment have been studied. These spectra essentially show an intensive peak interpreted in terms of L23 MM atomic-like and L23 VV transitions. By integration of this peak, the Auger emission cross sections were determined and their variations as a function of the incident particle energy were studied from a few keV up to 100 keV. These results have been compared to the values of the ionization cross sections calculated in a classical binary encounter approximation (BEA). One observed a good agreement for the aluminium target. For the magnesium, the discrepancy in the low energy range shows that, in those case, the electronic promotion in a molecular orbital model added at the electronic excitation due to the direct Coulomb interaction.  相似文献   

15.
The L2,3-M2,3V resonant Auger electron spectroscopy (RAES) spectrum of Ti metal measured by Le Fêvre et al. [P. Le Fêvre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421] is analyzed in the light of relaxation and decay of the resonantly excited L2,3-hole states. The relaxation time of the resonantly excited L2,3-hole state to the fully relaxed (screened) one is much shorter than the L2,3-hole Auger decay time, whereas the participant Coster–Kronig (CK) decay time of the resonantly excited L2-hole state to the fully relaxed L3-hole state at the L2 resonance is as short as the relaxation time of the resonantly excited L2-hole state to the fully relaxed one. The excited electron is predominantly either rapidly decoupled from the L2,3-hole decay or annihilated by the participant CK decay. Thus, near the L2,3 edges the L2,3-M2,3V RAES spectral peak appears at constant kinetic energy. The L2,3-M2,3V RAES spectrum shows a normal L2,3-M2,3V Auger decay profile not modulated by the density of empty d states probed by the resonant excitation. Not only the relaxation time but also the participant CK decay time depends on photon energy because they depend on the density of empty d states probed by the resonant excitation. As a result, the L2,3 X-ray absorption spectroscopy spectral line broadening depends on photon energy.  相似文献   

16.
The integrated areas of the Al L23VV and O KL23L23 Auger peaks and the Al surface plasmon energy ?ωS are reported for the Al(001) surface as a function of exposure to O in the exposure range 0–114 L(1 L=1langmuir=10?6Torr sec). It is shown that for exposures below a critical value of 15 L, ?ωS is constant within experimental error while the O Auger peak area increases linearly. For exposures above 15 L, ?ωS decreases linearly from 10.5 eV to 8.5 eV and the O Auger peak area undergoes relatively slow linear increases correspondingly. The Al Auger peak area decreases by 30% per 1 eV decrease of ?ωS. The results are discussed with reference to theory relating Auger transition intensities to the spectral density function.  相似文献   

17.
A comparison of Auger structures observed on the energy distributions of secondary electrons emitted from Mg and A1 solid targets bombarded by either light particles (H+ and He+) or heavy ions (Ne+, Ar+, …) is presented. With incident protons, it essentially appears a broad peak corresponding to a L23VV transition and a weak shoulder due to the surface and bulk plasmon excitation. The Auger structures obtained with heavy ions are richer and the peaks which compose it are sharper. Such atomic-like structures correspond to Auger transitions from excited (with one or two L23 holes) moving recoiling atoms. The experimental L23 Mg and A1 ionization cross sections were determined from Auger spectra. In H+?Mg (or A1) collisions our results are in good agreement with the theoretical values calculated in a PWBA model. In the case of heavy ion-target interactions, we compared the experimental measurements with ionization cross section calculations obtained in a Landau-Zener model.  相似文献   

18.
纳米硅结构使能带的带隙展宽,并形成准直接能带带隙结构.弯曲表面上的某些键合可以在带隙中产生局域电子态,计算表明:纳米硅弯曲表面上的Si-N,Si=O和Si-O-Si键合能够分别在带隙中2.02 eV,1.78 eV和2.03 eV附近形成局域态子带,对应了实验光致荧光谱(PL)中605 nm处的LN线、693 nm处的LO1线和604 nm处的LO2线特征发光.特别是,Si-Yb键合在纳米硅弯曲表面上可以将发光波长调控到光通信窗口,在1310 nm到1600 nm范围形成LYb线特征发光.  相似文献   

19.
The SiO2 electronic density of states has been calculated within the Bethe lattice approximation using a simplified tight-binding hamiltonian. All of the experimentally found features, except a peak in the Si L2, 3 spectrum, are reproduced in our calculation when only unlike-atom bonds are present in the structure of the oxide. We have found that a possible origin of the peak in the Si L2, 3 spectrum is the presence of clusters of elemental Si in the oxide.  相似文献   

20.
H.H. Madden 《Surface science》1981,105(1):129-144
Changes in the valence band density of states (DOS) of a (100) silicon surface that accompany he chemisorption of atomic hydrogen onto that surface are deduced from a study of the changes in the L2,3VV Auger lineshape. Complementary changes in the conduction band DOS are inferred from changes in L2,3VV-core-level characteristic loss spectra (CLS). The chemisorbed hydrogen layer is identified as the dihydride phase from low energy electron diffraction measurements. Upon hydrogen adsorption the DOS at the top of the valence band decreases and new energy levels associated with the Si-H bonds appear lower in the band. Assuming that the Auger signal from the hydrogen covered sample consists of a superposition of a signal from silicon atoms bonded to hydrogen in the dihydride layer and an elemental-Si signal from the substrate, a N(E) difference spectrum with features due only to the dihydride is obtained by subtracting the background corrected, loss deconvoluted L2,3VV signal for a clean (100)Si surface rom the corresponding signal for the hydrogen covered surface. Comparisons of the energy position of the major peak in this difference spectrum with that of the main peak in a gas phase silane Si-L2,3VV spectrum, and of the corresponding Auger energy calculated empirically, indicate a hole—hole interaction energy of ~8 eV for the two-hole final state in the gaseous system and zero for the dihydride surface system. Hydrogen induced changes in the conduction band DOS are less apparent than those of the valence band DOS with only the possibility of a decrease in the DOS at the bottom of the conduction band being inferred from the CLS measurements. Electron stimulated desorption of hydrogen from the dihydride layer is adduced from changes in the Auger lineshape under electron beam irradiation of the surface. Hydrogen induced changes in the near-elastic electron energy loss spectra (ELS) are also reported and compared with previously published ELS results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号