首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three near infrared (NIR) metal-free organic sensitizers (FNE32, FNE34, FNE36) based on the thieno[3,4-b]pyrazine derivative have been designed and synthesized for application in quasi-solid-state dye-sensitized solar cells (DSSCs). These organic dyes demonstrate maximum absorption bands at 596-625 nm due to the presence of the thieno[3,4-b]pyrazine derivative, which facilitates the intramolecular electron transfer from the donor to the acceptor. Quasi-solid-state DSSCs based on FNE34 display efficient photoelectric conversion over the whole visible range extending into the NIR region up to 900 nm with maximum incident monochromatic photon-to-electron conversion efficiency (IPCE) of 77%, yielding a short-circuit photocurrent density of 16.24 mA cm(-2) and a power conversion efficiency of 5.30%. To the best of our knowledge, this is the highest efficiency for quasi-solid-state DSSCs based on an organic NIR dye. When exposed to one-sun illumination for 1000 h, the quasi-solid-state DSSC based on FNE34 exhibits good long-term stability with almost constant power conversion efficiency.  相似文献   

2.
Much progress has been made in the field of research on organic near‐infrared materials for potential applications in photonics, communications, energy, and biophotonics. This account mainly describes our research work on organic near‐infrared materials; in particular, donor‐acceptor small molecules, organometallics, and donor‐acceptor polymers with the bandgaps less than 1.2 eV. The molecular designs, structure‐property relationships, unique near‐infrared absorption, emission and color/wavelength‐changing properties, and some emerging applications are discussed.  相似文献   

3.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
The application of heavy-metal complexes in bulk-heterojunction (BHJ) solar cells is a promising new research field which has attracted increasing attention, due to their strong spin-orbit coupling for efficient singlet to triplet intersystem crossing. This review article focuses on recent advances of heavy metal complex containing organic and polymer materials as photovoltaic donors in BHJ solar cells. Platinum-acetylide containing oligomersor and polymers have been firstly illustrated due to the good solubility, square planar structure, as well as the fairly strong Pt-Pt interaction. Then the cyclometalated Pt or Ir complex containing conjugated oligomers and polymers are presented in which the triplet organometallic compounds are embedded into the organic/polymer backbone either through cyclometalated main ligand or the auxiliary ligand. Pure triplet small molecular cyclometalated Ir complex are also briefly introduced. Besides the chemical modification, physical doping of cyclometalated heavy metal complexes as additives into the photovoltaic active layers is finally demonstrated.  相似文献   

5.
Three small molecules with the same arms and different cores of perylene diimide(PDI)or indaceno[2,1-b:6,5-b']dithiophene(IDT)were designed and synthesized as the acceptor materials for P3HT-based bulk-heterojunction(BHJ)solar cells.The impacts of the different cores on the optical absorption,electrochemical properties,electron mobility,film morphology,photoluminescene characteristics,and solar cell performance were thoroughly studied.The three compounds possess a broad absorption covering the wavelength range of 400–700 nm and relatively low lowest unoccupied molecular orbital(LUMO)energy levels of?3.86,?3.81 and?3.99 eV.The highest power conversion efficiency of 0.82%was achieved for the BHJ solar cells based on SM3 as the acceptor material,the compound with a PDI core.  相似文献   

6.
染料敏化太阳能电池(dye-sensitized solar cells,简写为DSSCs)是由Michael Gr覿tzel等开发的第三代光伏电池,它具有低成本、制作简单、光学性能可调、光电转换效率高等优势。其中光敏剂是DSSCs的重要组成部分,通过吸收可见光将电子传递到半导体导带,对整个电池的电子循环至关重要。广泛采用的光敏剂为N719等贵金属配合物,但其价格非常昂贵,很难实现大规模产业化。因此寻找低成本的非贵金属光敏剂是该领域的一项挑战。多金属氧酸盐(简称多酸,Polyoxometalates,简写为POMs)是一类具有纳米尺寸的分子基纳米材料,是分子型无机类半导体材料。多酸的富氧表面可以被活化和修饰,吸收光谱可以覆盖可见区甚至近红外区,具有合适的氧化还原电势,良好的热稳定性和溶解性。近年来,一系列研究表明多酸可以作为光敏剂应用在DSSCs中。本文中,我们以课题组多年来在POMs和太阳能电池领域的研究工作积累以及国内外同行专家的研究工作为基础,对多酸基光敏剂在DSSCs中的应用进行了详细综述。首先我们阐述了DSSCs的研究意义、多酸的简介、多酸的能级测量及调控。之后我们重点综述了多酸作为DSSCs中的光敏剂和共敏剂的研究。最后,我们对多酸基光敏剂在DSSCs领域的发展前景进行了总结和展望。本文有望引起多酸化学、材料化学及新兴交叉学科领域研究者的广泛研究兴趣,并为太阳能电池光敏剂的研究提供新的思路。  相似文献   

7.
This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed.  相似文献   

8.
Conjugated copolymer derivatives of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT) containing 10% of alkyne functionalities in the side chains have been prepared using the sulfinyl precursor route and the Rieke method, respectively. With the aim of expanding the absorption range of these conjugated polymers for their use in bulk heterojunction (BHJ) polymer:fullerene solar cells, appropriate phthalocyanine (Pc) molecules have been covalently bound through a post-polymerization "click chemistry" reaction between the alkyne functionalities in the side chains of the copolymers and a Pc functionalized with an azide moiety. The resulting poly(p-phenylenevinylene)-Pc (PPV-Pc) material holds a 9 mol% content of Pcs, while the polythiophene-Pc material (PT-Pc) contains a 8 mol% of Pc-functionalization in the side chains. As expected, the presence of the Pc contributes to the extension of the absorption up to 700 nm. BHJ solar cells have been prepared using PPV-Pc and PT-Pc materials in combination with PCBM. Although the Pc absorption contributes to the generation of photocurrent, the overall power conversion efficiencies (PCE) obtained from these cells are lower than those obtained with BHJ P3HT:PCBM (1:1) and MDMO-PPV:PCBM (1:4) solar cells. A plausible explanation could be the moderate solubility of the PPV-Pc and PT-Pc materials that limits the processing into thin films.  相似文献   

9.
Since Prof. Grätzel and co-workers achieved breakthrough progress on dye-sensitized solar cells (DSSCs) in 1991, DSSCs have been extensively investigated and wildly developed as a potential renewable power source in the last two decades due to their low cost, low energy-intensive processing, and high roll-to-roll compatibility. During this period, the highest efficiency recorded for DSSC under ideal solar light (AM 1.5G, 100 mW cm−2) has increased from ~7% to ~14.3%. For the practical use of solar cells, the performance of photovoltaic devices in several conditions with weak light irradiation (e.g., indoor) or various light incident angles are also an important item. Accordingly, DSSCs exhibit high competitiveness in solar cell markets because their performances are less affected by the light intensity and are less sensitive to the light incident angle. However, the most used catalyst in the counter electrode (CE) of a typical DSSC is platinum (Pt), which is an expensive noble metal and is rare on earth. To further reduce the cost of the fabrication of DSSCs on the industrial scale, it is better to develop Pt-free electro-catalysts for the CEs of DSSCs, such as transition metallic compounds, conducting polymers, carbonaceous materials, and their composites. In this article, we will provide a short review on the Pt-free electro-catalyst CEs of DSSCs with superior cell compared to Pt CEs; additionally, those selected reports were published within the past 5 years.  相似文献   

10.
SYNTHESIS AND CHARACTERIZATIONS OF NEAR INFRARED ABSORBING POLYMERS   总被引:2,自引:0,他引:2  
A series of near infrared (NIR) absorbing dinuclear ruthenium dicarbonylhydrazine complexes (DCH-Ru),[{Ru(bpy)_2)_2μ-DCH]~(n ) (where bpy = 2,2'-bipyridinc and n = 2, 3 or 4), were prepared. The DCH-Ru complexes areelectrochromic in the NIR region with a high absorption coefficient at 1550-1600 nm typically over 10000 M~(-1)cm~(-1). DCH-Ru complex polymers with good NIR electrochromic properties were also obtained and processed to make a device foroptical attenuation at a wavelength of 1550 nm. The potential of these DCH-Ru polymers for use in a variable opticalattenuator has been demonstrated with an attenuating power at the 1550-nm telecommunication wavelength over 7.0 dB permicron of polymer film thickness. Other classes of NIR active materials are the pentacenediquinones and the correspondingpoly(ether pentacenediquinone)s. These polymers can be electrochemically reduced to the corresponding semiquinone(radical anion) having NIR absorption within a telecom window (e. g., 1310 nm).  相似文献   

11.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Two novel side chain polymeric metal complexes (PFT‐Cd and PFT‐Zn) have been designed, synthesized, and characterized. These polymers were found to be good thermally stable and high glass transitions temperature, which indicate that these polymers could be applied as photovoltaic materials for dye‐sensitized solar cells (DSSCs). The obtained polymers exhibited good photovoltaic property. The DSSCs based on the PFT‐Cd and PFT‐Zn exhibited a maximum solar‐to‐electricity conversion efficiency (η) up to 3.37% (Jsc = 7.27 mA/cm2, Voc = 0.67 V, and FF = 0.69) and 3.01% (Voc = 0.72 V, Jsc = 6.10 mA/cm2, FF = 0.69) under simulated AM 1.5 G solar irradiation (90–95 mW/cm2). The result shows that these novel materials are suitable for the dye‐sensitized solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Two criteria for processing additives introduced to control the morphology of bulk heterojunction (BHJ) materials for use in solar cells have been identified: (i) selective (differential) solubility of the fullerene component and (ii) higher boiling point than the host solvent. Using these criteria, we have investigated the class of 1,8-di(R)octanes with various functional groups (R) as processing additives for BHJ solar cells. Control of the BHJ morphology by selective solubility of the fullerene component is demonstrated using these high boiling point processing additives. The best results are obtained with R = Iodine (I). Using 1,8-diiodooctane as the processing additive, the efficiency of the BHJ solar cells was improved from 3.4% (for the reference device) to 5.1%.  相似文献   

15.
Wide-bandgap π-conjugated donor-acceptor (D-A) alternating copolymers consisting of benzo[1,2-c:4,5-c']dithiophene-4,8-dione (BDTD) as the electron-accepting building block have demonstrated outstanding performances in organic bulk heterojunction (BHJ) solar cell devices. But the synthesis of these polymers has been largely limited to conventional polymerization techniques, particularly Stille-coupling based polycondensations, which often involve tedious preactivation of C-H bonds using highly flammable reagents such as butyl lithium and highly toxic reagents such as trialkyl tin chlorides. Herein, we report a “greener” synthetic route of direct arylation polymerization to a series of wide bandgap D-A copolymers with a common acceptor building block of BDTD. The structure–property relationship in these polymers is characterized. We also present the device performances of these polymers in both thin-film field-effect transistors and organic BHJ solar cells involving the BDTD-based polymers as the electron donors and fullerene derivatives as the electron acceptors. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2554–2564  相似文献   

16.
聚集诱导发光(AIE)现象的发现为解决传统有机荧光分子在高浓度和聚集形态下存在的荧光猝灭问题提供了最佳方案,并实现了在光电器件、化学传感、生物成像和靶向治疗等众多领域的广泛应用.随着对AIE 发光机理研究的不断深入,AIE 分子体系得到了极大的扩展.其中,一类具有给体-受体结构的AIE分子能够显著降低分子能隙,使发光分...  相似文献   

17.
A novel multifunctional conjugated polymer (RCP‐1) composed of an electron‐donating backbone (carbazole) and an electron‐accepting side chain (cyanoacetic acid) connected through conjugated vinylene and terthiophene has been synthesized and tested as a photosensitizer in two major molecule‐based solar cells, namely dye sensitized solar cells (DSSCs) and organic photovoltaic cells (OPVs). Promising initial results on overall power conversion efficiencies of 4.11% and 1.04% are obtained from the basic structure of DSSCs and OPVs based on RCP‐1, respectively. The well‐defined donor (D)‐acceptor (A) structure of RCP‐1 has made it possible, for the first time, to reach over 4% of power conversion efficiency in DSSCs with an organic polymer sensitizer and good operation stability.  相似文献   

18.
Based on a full device model adopting three-dimensional Pauli master equation approach, the charge carrier loss process due to poor extraction channels between electrode and active layer in polymer bulk heterojunction(BHJ) solar cells was studied. The influence of barrier height on device performance was simulated to reveal the importance of electrode improvement. It was found that relatively large extraction barrier height(over 0.40 eV) can lead to the significant diminishing of the overall charge collection efficiency, since bimolecular recombination rate would increase to a high level due to enhanced space charge accumulation effect near electrodes. In contrast, the percentage of charge carrier annihilated due to geminate recombination did not change significantly with barrier height variation. Our simulation results may provide the basis for a more accurate model and potential direction of polymer BHJ solar cells improvement.  相似文献   

19.
Organic solar cells (OSCs) have gained attention of the scientific community from the last decade and are now considered as one of the most important source for low‐cost power production. The recent rapid progress in non‐fullerene acceptors in BHJ indicates that they have potential to compete with fullerene‐based BHJ OSCs. The present review addressed the systematic comparison among various acceptors (diketopyrrolopyrrole (DPP), benzothiadiazole (BTD) and perylenediimide (PDI) based acceptors) in order to design and improve the performance of small molecules based non‐fullerene acceptors. This review focuses on the performance of small molecule non‐fullerene acceptors based on DPP, BTD and PDI for OSCs with respect to the change in molecular structures, energy levels, and PCE. A systematic comparison on the effect of molecular architecture, side chains on their performance is provided with the intention of evaluating the challenge to make highly efficient acceptors for the next generation organic photovoltaics.  相似文献   

20.
Branched‐alkyl‐substituted poly(thieno[3,4‐c]pyrrole‐4,6‐dione‐alt‐3,4‐difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low‐band‐gap polymer donor (PCE10) commonly used with fullerenes. The “all‐polymer” BHJ devices made with PTPD[2F]T achieve efficiencies of up to 4.4 %. While, to date, most efficient polymer acceptors are based on perylenediimide or naphthalenediimide motifs, our study of PTPD[2F]T polymers shows that linear, all‐thiophene systems with adequately substituted main chains can also be conducive to efficient BHJ solar cells with polymer donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号