首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A de novo solid-phase synthesis of the cyclic lipodepsipeptide daptomycin via Boc chemistry was achieved. The challenging ester bond formation between the nonproteinogenic amino acid kynurenine was achieved by esterification of a threonine residue with a protected tryptophan. Subsequent late-stage on-resin ozonolysis, inspired by the biomimetic pathway, afforded the kynurenine residue directly. Synthetic daptomycin possessed potent antimicrobial activity (MIC100=1.0 μg mL−1) against S. aureus, while five other daptomycin analogues containing (2R,3R)-3-methylglutamic acid, (2S,4S)-4-methylglutamic acid or canonical glutamic acid at position twelve prepared using this new methodology were all inactive, clearly establishing that the (2S,3R)-3-methylglutamic acid plays a key role in the antimicrobial activity of daptomycin.  相似文献   

2.
Daptomycin is a cyclic anionic lipopeptide antibiotic recently approved for the treatment of complicated skin infections (Cubicin). Its function is dependent on calcium (as Ca2+). Circular dichroism spectroscopy indicated that daptomycin experienced two structural transitions: a transition upon interaction of daptomycin with Ca2+, and a further transition upon interaction with Ca2+ and the bacterial acidic phospholipid, phosphatidyl glycerol. The Ca2+-dependent insertion of daptomycin into model membranes promoted mild and more pronounced perturbations as assessed by the increase of lipid flip-flop and membrane leakage, respectively. The NMR structure of daptomycin indicated that Ca2+ induced a conformational change in daptomycin that increased its amphipathicity. These results are consistent with the hypothesis that the association of Ca2+ with daptomycin permits it to interact with bacterial membranes with effects that are similar to those of the cationic antimicrobial peptides.  相似文献   

3.
《Electroanalysis》2017,29(5):1490-1496
Daptomycin was the first approved drug from a new class of antimicrobials, the cyclic lipopeptides, and presents a broad spectrum of activity against a wide range of gram‐positive bacteria. The daptomycin redox behaviour, by cyclic, differential pulse and square wave voltammetry, in a wide pH range, at a glassy carbon electrode, was investigated. The daptomycin oxidation was a two‐step irreversible diffusion‐controlled process and the diffusion coefficient DDPT = 2.32 × 10−5 cm2 s−1, was calculated. A detection limit LOD = 0.32 μM, was obtained. For the first time daptomycin, in fetal bovine serum biological fluid, using DP voltammetry, was determined.  相似文献   

4.
In the present work, a comprehensive metabolic network of Streptomyces roseosporus LC-54-20 was proposed for daptomycin production. The analysis of extracellular metabolites throughout the batch fermentation was evaluated in addition to daptomycin and biomass production. Metabolic flux distributions were based on stoichiometrical reaction as well as the extracellular metabolites fluxes. Experimental and calculated values for both the specific growth rate and daptomycin production rate indicated that the in silico model proved a powerful tool to analyze the metabolic behaviors based on the analysis under different initial glucose concentrations throughout the fermentation. Through manipulating different pH values, the production rates of various extracellular metabolites were also presented in this paper. Flux distribution variations revealed that the daptomycin production could be significantly influenced by the branch points of glucose 6-phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, and oxaloacetate. The five principal metabolites were certified as the flexible nodes and could form potential bottlenecks for a further enhancement of daptomycin production. Furthermore, various concentrations of the five precursors were added into the batch fermentation and led to the enhancement of daptomycin concentration and production rate.  相似文献   

5.
A 13-min LC–MS method was developed for the determination of daptomycin, a new potent antibiotic, in peritoneal fluid, blood plasma, and urine of patients receiving renal replacement therapy. Chromatography was performed on a C18 column and detection was performed by a single-quadrupole mass spectrometer coupled to LC via an electrospray interface (ESI). The column effluent was also monitored at 370 nm using a photodiode-array detector. The developed method provided a linear dynamic range for concentrations from 0.5 μg mL−1 to 100 μg mL−1. Method precision and accuracy were found to be satisfactory for clinical application, thus the method was successfully used for the analysis of daptomycin in pharmacokinetic studies. The drug was preventively administered against Gram-positive infections to 19 clinical patients undergoing peritoneal dialysis. Peritoneal fluid, blood plasma, and urine samples were collected at 13 time points over a period of 48 h. Clinical samples were analysed following simple sample-preparation procedures and daptomycin was unambiguously detected and quantified.  相似文献   

6.
Daptomycin is a branched cyclic nonribosomally assembled acidic lipopeptide, which is the first clinically approved antibiotic of this class. Here we show that the recombinant cyclization domain of the Streptomyces coelicolor calcium-dependent antibiotic (CDA) nonribosomal peptide synthetase (NRPS) is a versatile tool for the chemoenzymatic generation of daptomycin derivatives. Linear CDA undecapeptide thioesters with single exchanges at six daptomycin-specific residues were successfully cyclized by CDA cyclase. Simultaneous incorporation of all six of these residues into the peptide backbone and elongation of the N-terminus of CDA by two residues yielded a daptomycin derivative that lacked only the beta-methyl group of l-3-methylglutamate. Bioactivity studies with several substrate analogues revealed a significant role of nonproteinogenic constituents for antibacterial potency. In accordance with acidic lipopeptides, the bioactivity of the chemoenzymatic assembled daptomycin analogue is dependent on the concentration of calcium ions. Single deletions of the four acidic residues in the peptide backbone suggest that only two aspartic acid residues are essential for antimicrobial potency. These two residues are strictly conserved among other nonribosomal acidic lipopeptides and the EF-motif of ribosomally assembled calmodulin. Based on these findings CDA cyclase is a versatile catalyst that can be used to generate novel daptomycin derivatives that are otherwise difficult to obtain by chemical modification of the parental tridecapeptide to improve further its therapeutic activity.  相似文献   

7.
Daptomycin, a lipopeptide antibiotic with excellent activity against Gram‐positive bacteria, is excreted primarily by the kidneys. Development of effective chromatographic methodologies for the determination of daptomycin in human specimens is necessary for clinical use. This study developed a simple and validated ultra‐high‐performance liquid chromatography method coupled to ultraviolet detection for determination of daptomycin in human plasma and urine. After the pretreatments involving protein precipitation, the supernatants were separated using a 2.3 µm particle size octadecylsilyl column, and the run time was 1 min. The calibration curves were linear over the concentration ranges of 2–200 mg/L for plasma and 25–300 mg/L for urine. Intra‐ and inter‐assay precision and accuracy values of plasma were within 13.5 and 92–100% and within 10.7 and 100–107%, respectively. Those of urine were within 5.0 and 101–104% and within 3.7 and 100–101%, respectively. The validated method was applied to the determination of plasma and urine samples in patients receiving 4–6 mg/kg of intravenous daptomycin, resulting in sufficient sensitivity for evaluating the plasma exposure and urinary excretion. In conclusion, the present method with acceptable analytical performance can be helpful for evaluating the pharmacokinetic disposition of daptomycin in clinical settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Daptomycin is an acidic lipopeptide antibiotic, whose three-dimensional structure and mechanism of action is currently unknown. Recently daptomycin, trade name Cubicin, was approved as a drug for the treatment of skin-related infections (M. Larkin Lancet, 2003, 3, 677) and became the first antibiotic of its class to be used in the clinic (A. Raja et al., Nature Rev. Drug Discov., 2003, 2, 943-944). We have carried out a systematic high field NMR study of daptomycin and its binding to calcium ions which is essential for antibiotic activity. In this first report, we demonstrate the sequence-specific resonance assignment of daptomycin under resolved NMR measurement conditions. In addition to this, we have determined the 3D structure of apo-daptomycin and demonstrated a 1 : 1 stoichiometry on the binding to calcium ions. We have also demonstrated that the binding of calcium ions does not result in major conformational changes, but does induce aggregation. This may be an important factor in the mode of action of daptomycin.  相似文献   

9.
10.
In the past 20 years, peptide‐based antibiotics, such as vancomycin, teicoplanin, and daptomycin, have often been considered as second‐line antibiotics. However, in recent years, an increasing number of reports on vancomycin resistance in pathogens appeared, which forces researchers to find novel lead structures for potent new antibiotics. Herein, we report the total synthesis of a defined endo‐type B PPAP library and their antibiotic activity against multiresistant S. aureus and various vancomycin‐resistant Enterococci . Four new compounds that combine high activities and low cytotoxicity were identified, indicating that the PPAP core might become a new non‐peptide‐based lead structure in antibiotic research.  相似文献   

11.
12.
Nonribosomal peptides and polyketides have attracted considerable attention in basic and applied research and have given rise to a multitude of therapeutic agents. The biological activity of many of these complex natural products, including for example the peptide antibiotics daptomycin and bacitracin or the polyketide anticancer agents epothilone and geldanamycin, specifically relies on the macrocyclization of linear acyl chains that form the backbone of these highly valuable molecules. The construction of the linear acyl precursors is accomplished by modular protein templates that follow comparable assembly line logic. As an enzymatic key step, macrocyclization is introduced after the consecutive condensation of amino acid or acyl-CoA building blocks by dedicated catalysts, and the mature product is released from the biosynthetic machinery. The diverse chain termination strategies of nonribosomal peptide and polyketide assembly lines, the structures and mechanisms of the versatile macrocyclization catalysts, and chemoenzymatic approaches for the development of new therapeutics are the focus of this review. Further, it is illustrated that macrocyclization is not restricted to secondary metabolites, but represents a commonly found structural motif of other biologically active proteins and peptides.  相似文献   

13.
14.
Daptomycin is a lipopeptide antibiotic produced by a nonribosomal peptide synthetase (NRPS) in Streptomyces roseosporus. The holoenzyme is composed of three subunits, encoded by the dptA, dptBC, and dptD genes, each responsible for incorporating particular amino acids into the peptide. We introduced expression plasmids carrying dptD or NRPS genes encoding subunits from two related lipopeptide biosynthetic pathways into a daptomycin nonproducing strain of S. roseosporus harboring a deletion of dptD. All constructs successfully complemented the deletion in trans, generating three peptide cores related to daptomycin. When these were coupled with incomplete methylation of 1 amino acid and natural variation in the lipid side chain, 18 lipopeptides were generated. Substantial amounts of nine of these compounds were readily obtained by fermentation, and all displayed antibacterial activity against gram-positive pathogens.  相似文献   

15.
Daptomycin, a macrocyclic antibiotic, is here used as a new chiral selector in preparation of chiral stationary phase (CSP) in a recently prepared polymer monolithic capillary. The latter is prepared using the copolymerization of the monomers glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) in the presence of daptomycin in water. Under reversed phase conditions (RP), the prepared capillaries were tested for the enantioselective nanoliquid chromatographic separation of fifty of the racemic drugs of different pharmacological groups, such as adrenergic blockers, H1-blockers, NSAIDs, antifungal drugs, and others. Baseline separation was attained for many drugs under RP-HPLC. Daptomycin expands the horizon of chiral selectors in HPLC.  相似文献   

16.
The acidic lipopeptides, including the calcium-dependent antibiotics (CDA), daptomycin, and A54145, are important macrocyclic peptide natural products produced by Streptomyces species. All three compounds contain a 3-methyl glutamate (3-MeGlu) as the penultimate C-terminal residue, which is important for bioactivity. Here, biochemical in vitro reconstitution of the 3-MeGlu biosynthetic pathway is presented, using exclusively enzymes from the CDA producer Streptomyces coelicolor. It is shown that the predicted 3-MeGlu methyltransferase GlmT and its homologues DptI from the daptomycin producer Streptomyces roseosporus and LptI from the A54145 producer Streptomyces fradiae do not methylate free glutamic acid, PCP-bound glutamate, or Glu-containing CDA in vitro. Instead, GlmT, DptI, and LptI are S-adenosyl methionine (SAM)-dependent alpha-ketoglutarate methyltransferases that catalyze the stereospecific methylation of alpha-ketoglutarate (alphaKG) leading to (3R)-3-methyl-2-oxoglutarate. Subsequent enzyme screening identified the branched chain amino acid transaminase IlvE (SCO5523) as an efficient catalyst for the transformation of (3R)-3-methyl-2-oxoglutarate into (2S,3R)-3-MeGlu. Comparison of reversed-phase HPLC retention time of dabsylated 3-MeGlu generated by the coupled enzymatic reaction with dabsylated synthetic standards confirmed complete stereocontrol during enzymatic catalysis. This stereospecific two-step conversion of alphaKG to (2S,3R)-3-MeGlu completes our understanding of the biosynthesis and incorporation of beta-methylated amino acids into the nonribosomal lipopeptides. Finally, understanding this pathway may provide new possibilities for the production of modified peptides in engineered microbes.  相似文献   

17.
Here, we described the discovery of anti-infective agent arylomycin and its biosynthetic gene cluster in an industrial daptomycin producing strain Streptomyces roseosporus. This was accomplished via the use of MALDI imaging mass spectrometry (IMS) along with peptidogenomic approach in which we have expanded to short sequence tagging (SST) described herein. Using IMS, we observed that prior to the production of daptomycin, a cluster of ions (1-3) was produced by S. roseosporus and correlated well with the decreased staphylococcal cell growth. With a further adopted SST peptidogenomics approach, which relies on the generation of sequence tags from tandem mass spectrometric data and query against genomes to identify the biosynthetic genes, we were able to identify these three molecules (1-3) to arylomycins, a class of broad-spectrum antibiotics that target type I signal peptidase. The gene cluster was then identified. This highlights the strength of IMS and MS guided genome mining approaches in effectively bridging the gap between phenotypes, chemotypes, and genotypes.  相似文献   

18.
Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples.  相似文献   

19.
The calcium-dependent antibiotics (CDAs) and daptomycin are therapeutically relevant nonribosomal lipopeptide antibiotics that contain penultimate C-terminal 3-methyl glutamate (3-MeGlu) residues. Comparison with synthetic standards showed that (2S,3R)-configured 3-MeGlu is present in both CDA and daptomycin. Deletion of a putative methyltransferase gene glmT from the cda biosynthetic gene cluster abolished the incorporation of 3-MeGlu and resulted in the production of Glu-containing CDA exclusively. However, the 3-MeGlu chemotype could be re-established through feeding synthetic 3-methyl-2-oxoglutarate and (2S,3R)-3-MeGlu, but not (2S,3S)-3-MeGlu. This indicates that methylation occurs before peptide assembly, and that the module 10 A-domain of the CDA peptide synthetase is specific for the (2S,3R)-stereoisomer. Further mechanistic analyses suggest that GlmT catalyzes the SAM-dependent methylation of alpha-ketoglutarate to give (3R)-methyl-2-oxoglutarate, which is transaminated to (2S,3R)-3-MeGlu. These insights will facilitate future efforts to engineer lipopeptides with modified glutamate residues, which may have improved bioactivity and/or reduced toxicity.  相似文献   

20.
Currently, little information has been published on the application of ternary eluent compositions in supercritical fluid chromatography for separating peptides. This work investigates the benefits of adding acetonitrile to methanol as the modifier. Three cyclic antibiotic peptides (bacitracin, colistin, and daptomycin) ranging between 1000 and 2000 Da were chosen as model substances. The ternary mixture of carbon dioxide, methanol, and acetonitrile is optimized to increase the resolution of the peptide's fingerprint. In addition, varying compositions of methanol and acetonitrile were found to change the elution order of the analytes, which is a valuable tool during method development. An individual gradient method using two Torus 2-PIC columns (each 100 × 3.0 mm, 1.7 μm), carbon dioxide, and a modifier consisting of acetonitrile/methanol/water/methanesulfonic acid (60:40:2:0.1, v:v:v:v) was optimized for each of the peptides. Subsequently, a generic method development protocol applicable to polypeptides is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号