首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Using previous results we construct theq-analogues of the left invariant vector fields of the quantum enveloping algebra corresponding to the complex Lie algebras of typeA n–1 ,B n ,C n , andD n . These quantum vector fields are functionals over the complex quantum groupA. In the special caseA 1 it is shown that this Hopf algebra coincides withU q sl(2, ).  相似文献   

2.
We construct complex quantum groups associated with the Lie algebras of typeA n–1 ,B n ,C n andD n which are considered as real algebras. Following the ideas of Faddeev, Reshetikhin and Takhtayan, we obtain the Hopf algebras of regular functionalsU R , on these real complexified quantum groups. Theq-analogues of the left invariant vector fields of the quantum enveloping algebras are defined. These quantum vector fields are functionals over the corresponding real formA of the complex quantum groupA. The equivalence of the Hopf algebra of regular functionals and the algebra of complex quantum vector fields is shown by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals. In the special exampleA 1 , we derive theq-deformed real complexified enveloping algebraU q sl(2, ) with six generators.Presented at the Colloquium on the Quantum Groups, Prague, 18–20 June, 1992.Based on the papers: [i]Drabant B., Schlieker M., Weich W., and Zumino B.: PreprintLMU-TPW 1991-5 (to appear in Commun. Math. Phys.) [ii]Chryssomalakos C., Drabant B., Schlieker M., Weich W., and Zumino B.: Preprint UCB 92/03 (to appear in Commun. Math. Phys.) [iii]Drabant B., Juro B., Schlieker M., Weich W., and Zumino B.: Preprint MPI-Ph/92-39 (submitted to Lett. Math. Phys.)  相似文献   

3.
We define a quantum generalization of the algebra of functions over an associated vector bundle of a principal bundle. Here the role of a quantum principal bundle is played by a Hopf-Galois extension. Smash products of an algebra times a Hopf algebra H are particular instances of these extensions, and in these cases we are able to define a differential calculus over their associated vector bundles without requiring the use of a (bicovariant) differential structure over H. Moreover, if H is coquasitriangular, it coacts naturally on the associated bundle, and the differential structure is covariant.We apply this construction to the case of the finite quotient of the SL q(2) function Hopf algebra at a root of unity (q 3 = 1) as the structure group, and a reduced 2-dimensional quantum plane as both the base manifold and fibre, getting an algebra which generalizes the notion of classical phase space for this quantum space. We also build explicitly a differential complex for this phase space algebra, and find that levels 0 and 2 support a (co)representation of the quantum symplectic group. On this phase space we define vector fields, and with the help of the Sp q structure we introduce a symplectic form relating 1-forms to vector fields. This leads naturally to the introduction of Poisson brackets, a necessary step to do classical mechanics on a quantum space, the quantum plane.  相似文献   

4.
Gaudin model is a very important integrable model in both quantum field theory and condensed matter physics. The integrability of Gaudin models is related to classical r-matrices of simple Lie algebras and semi-simple Lie algebra. Since most of the constructions of Gaudin models works concerned mainly on rational and trigonometric Gaudin algebras or just in a particular Lie algebra as an alternative to the matrix entry calculations often presented, in this paper we give our calculations in terms of a basis of the typical Lie algebra, A n , B n , C n , D n , and we calculate a classical r-matrix for the elliptic Gaudin system with spin.   相似文献   

5.
We introduce a new algebra depending on two nonzero complex parameters z and q such that its specialization at z=q n and q=1 coincides the Brauer algebra. We show that the action of the new algebra commutes with the representation of the twisted deformation of the enveloping algebra U(o n) in the tensor power of the vector representation.  相似文献   

6.
To every vertex algebra V we associate a canonical decreasing sequence of subspaces and prove that the associated graded vector space gr(V) is naturally a vertex Poisson algebra, in particular a commutative vertex algebra. We establish a relation between this decreasing sequence and the sequence Cn introduced by Zhu. By using the (classical) algebra gr(V), we prove that for any vertex algebra V, C2-cofiniteness implies Cn-cofiniteness for all n≥2. We further use gr(V) to study generating subspaces of certain types for lower truncated ℤ-graded vertex algebras.Partially supported by an NSA grant  相似文献   

7.
8.
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system ?( n ) of observables “up to n loops”, where ?(0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. Received: 9 February 2000 / Accepted: 21 March 2000  相似文献   

9.
The structure of all discrete series of unitary irreducible representations of the U q (u(3, 1)) and U q (u(n, 1)) noncompact quantum algebras are investigated with the aid of extremal projection operators and the q-analog of the Mickelsson-Zhelobenko algebra Z(g, g′) q . The orthonormal basis constructed in the infinite-dimensional space of irreducible representations of the U q (u(n, 1)) ⊇ U q (u(n)) algebra is the q-analog of the Gelfand-Graev basis in the space of the corresponding irreducible representations of the u(n, 1) ⊇ u(n) classical algebra.  相似文献   

10.
Dynamical R-matrix relations are derived for the group-valued chiral vertex operators in the SU(n) WZNW model from the KZ equation for a general four-point function including two step operators. They fit the exchange relations of the U q (sl n ) covariant quantum matrix algebra derived previously by solving the dynamical Yang–Baxter equation. As a byproduct, we extend the regular basis introduced earlier for SU(2) chiral fields to SU(n) step operators and display the corresponding triangular matrix representation of the braid group.  相似文献   

11.
12.
Crystal algebra     
We define the crystal algebra, an algebra which has a base of elements of crystal bases of a quantum group. The multiplication is defined by the tensor product rule of crystal bases. A universal n-colored crystal algebra is defined. We study the relation between those algebras and the tensor algebras of the crystal algebra of U q (sl(2)) and give a presentation by generators and relations for the case of U q (sl(n)).  相似文献   

13.
We construct explicitly the level-one vertex operators for the fundamental modulesV(1) (i=0, 1,n) of the quantum affine algebra of typeB using free boson and fermion fields.  相似文献   

14.
A classification of “physical” superconformal algebras is given. The list consists of seven algebras: the Virasoro algebra, the Neveu-Schwarz algebra, theN = 2,3 and 4 algebras, the superalgebra of all vector fields on theN = 2 supercircle, and a new algebraCK 6 constructed in [3]. The proof relies heavily on the classification of all connected subgroups ofSO n(C) which act transitively on the quadric (v, v) = 1. To Ernest Borisovich Vinberg on his 60th birthday Partially supported by NSF grant DMS-9622870  相似文献   

15.
N = 1 supersymmetric gauge theories with global flavor symmetries contain a gauge invariant W-superalgebra which acts on its moduli space of gauge invariants. With adjoint matter, this superalgebra reduces to a graded Lie algebra. When the gauge group is SO(nc), with vector matter, it is a W-algebra, and the primary invariants form one of its representation. The same superalgebra exists in the dual theory, but its construction in terms of the dual fields suggests that duality may be understood in terms of a charge conjugation within the algebra. We extend the analysis to the gauge group E6.  相似文献   

16.
The theme of doing quantum mechanics on all Abelian groups goes back to Schwinger and Weyl. This theme was studied earlier from the point of view of approximating quantum systems in infinite-dimensional spaces by those associated to finite Abelian groups. This Letter links this theme to deformation quantization, and explores the set of noncommutative associative algebra structures on the Schwartz-Weil algebra of any locally compact separable Abelian group. If the group is a vector space of even dimension over a non-Archimedean local fieldK, there exists a family of noncommutative (Moyal) structures parametrized by the local field and containing membersarbitrarily close to the classical one, although the classical algebra is rigid in the sense of deformation theory. The-products are defined by Fourier integral operators. The problem of constructing sucharithmetic Moyal structures on the algebra of Schwartz-Bruhat functions on manifolds that are locally likeK 2n is raised.In memory of Julian Schwinger  相似文献   

17.
We describe the quantum sphere of Podles for c = 0 by means of a stereographic projection which is analogous to that which exibits the classical sphere as a complex manifold. We show that the algebra of functions and the differential calculus on the sphere are covariant under the coaction of fractional transformations with SU q(2) coefficients as well as under the action of SU q(2) vector fields. Going to the classical limit we obtain the Poisson sphere. Finally, we study the invariant integration of functions on the sphere and find its relation with the translationally invariant integration on the complex quantum plane.  相似文献   

18.
We prove that the set of cyclic vectors for a von Neumann algebra in a Hilbert spaceH is aG set, which is empty or dense. We obtain some corollaries, for instance: if (A 1,A 2 ...) is a sequence of von Neumann algebras inH, and if eachA n has a cyclic vector and a separating vector, then there exists a vector inH which is cyclic and separating for eachA n. For algebras of local observables, we improve the known results connecting the infinite type of the algebras and the existence of cyclic and separating vectors.  相似文献   

19.
We list characters (one-dimensional representations) of the reflection equation algebra associated with the fundamental vector representation of the Drinfeld–Jimbo quantum group q (gl(n)).  相似文献   

20.
We obtain the inhomogeneousq-groups IGL q (n) via a projection from GL q (n + 1). The bicovariant differential calculus of IGL q (n) is constructed, and the corresponding quantum Lie algebra is given explicitly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号