首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Refractive indices of the nanocrystalline Y3Al5O12 ceramic and a garnet single crystal of the same composition have been measured. In the visible and near IR range (0.4–1.064 μm), the prism method was used; in the medium IR range (2–6.2 μm), the interference method with the use of thin plates was applied. The refractive indices of these crystalline materials are practically the same over the entire spectral range studied and are described by the approximate formula proposed earlier for a single crystal. The parameters of the continuos-wave lasing in the nanocrystalline Y3Al5O12 ceramic doped with Nd3+ and Yb3+ ions measured recently are presented.  相似文献   

2.
Microhardness and fracture toughness of highly transparent Y3Al5O12-and Y3Al5O12: Nd3+-based nanocrystalline ceramics are measured for the first time. For the Y3Al5O12: Nd3+ laser ceramics, the use of a longitudinal scheme with a diode-laser pumping at a wavelength of 1.3186 mm (4 F 3/24 I 13/2 channel) enabled one to attain an output power of continuous-wave lasing of ~3.7 W with 35% efficiency.  相似文献   

3.

The influence of the size of Y2O3 powder particles on the structure formation and densification of Nd3+:Y3Al5O12 laser ceramics has been studied. It is shown that the use of 50- and 100-nm yttrium oxide particles makes it possible to synthesize single-phase yttrium aluminum garnet at temperatures of 1200 and 1500°C, respectively, whereas in the case of 5000-nm yttrium oxide particles 2-h exposure at a temperature of 1500°C yields only 80 wt % of the Nd3+:Y3Al5O12 phase. Bulk swelling of pressed samples during sintering of 2.94Y2O3-0.06Nd2O3-5Al2O3 powders with the size ratio of the initial particles R(Al2O3/Y2O3) ~ 5 is observed. The application of different-sized powders (R ~ 2.5) provides quantitative ratios between phases in the 3Y2O3-5Al2O3 system at which shrinkage in a temperature range of 20–1500°C is dominant. Laser ceramics 0–2 at % Nd3+:Y3Al5O12 have been obtained by the solid-phase sintering of oxide powders (R ~ 2.5). The slope efficiency for 1 at % Nd3+:Y3Al5O12 laser ceramics is found to be 33%.

  相似文献   

4.
The microhardness and fracture toughness of laser nanocrystalline ceramics based on the cubic oxides Y2O3 and Y3Al5O12 are determined experimentally. It is shown by comparative measurements that the fracture toughness and microhardness of Y2O3 ceramics exceed the corresponding parameters of Y2O3 single crystals by factors of 2.5 and 1.3, respectively. The fine morphology of grains and grain boundaries in fractures is investigated. It is ascertained that changes in the mechanical properties of the nanocrystalline ceramics under study are related to both the sizes and structure of grains and the structure of grain boundaries. It is suggested that twinning processes determine the mechanisms of formation of nanocrystalline ceramics.  相似文献   

5.
《Journal of Non》2006,352(23-25):2404-2407
Transparent 0.1 at.%Cr,1.0 at.%Nd:YAG (Y3Al5O12) ceramics were fabricated by a solid-state reaction and vacuum sintering with CaO as a charge compensator and tetraethyl orthosilicate (TEOS) as a sintering aid using high-purity powders of Al2O3, Y2O3, Nd2O3 and Cr2O3. The mixed powder compacts were sintered at 1800 °C for 5 h and 30 h under vacuum. The optical transmittance of the Cr,Nd:YAG ceramics sintered at 1800 °C for 5 h and 30 h is ∼63% and ∼78% in the infrared wavelengths, respectively. The two samples exhibit pore-free structures and the average grain size is about 10 and 20 μm. For the sample sintered at 1800 °C for 5 h, the dominant fracture mechanism is the transgranular fracture. With increase of holding time up to 30 h, the ratio of intergranular fracture surfaces increase and more Cr3+ ions in the Cr,Nd:YAG ceramic transform to Cr4+. High-quality Cr4+,Nd3+:YAG transparent ceramics may be a potential self-Q-switched laser material.  相似文献   

6.
Silica submicron spherical particles coated with an yttrium aluminum garnet (Y3Al5O12, YAG) layer doped with Eu3+ were prepared by the sol–gel method. The structure and morphology of samples determined by the X-ray powder diffraction measurements and transmission electron microscope images, respectively, indicated that well-crystallized garnet nanocrystallites were formed with successive coating cycles. Similar trends were deduced from the evolution of the luminescence spectra. The ratio of integrated intensities of the 5D0  7F2 and 5D0  7F1 transitions was used to analyze the structural variations in the surroundings of the Eu3+ ion. The effect of coating was analyzed by comparing the luminescence properties of the Y3Al5O12:Eu3+ nanocrystalline powders and composite Y3Al5O12:Eu3+/SiO2 materials.  相似文献   

7.
The utilization of liquid-phase epitaxy for growing thin yttrium-aluminium garnet films is discussed. By transfer method from lead solvents films were obtained with a composition Y3Al5O12: Nd3+ on substrates with composition Y3Al5O12, and films Y3Al5O12: Er3+, Y3Al5O12: Er3+, Ga3+ (about 40 wt% of erbium) on substrates Y3Al5O12: Nd3+ Characteristics are given for simultaneous induced emission generation of the system film-substrate at 77 K Er3+ ion (λgen = 1.6602 μ) being a component of the film, and Nd3+ ion, being a component of the substrate (λgen = 1.061 μm). The results obtained are discussed.  相似文献   

8.
《Journal of Non》2006,352(23-25):2385-2389
In order to find a new glass host and optimize erbium doping for IR glass optical amplifiers in photonic applications, a study on the optimization of the emission of erbium ions in the SiO2–Al2O3 glass by codoping with Y2O3 is performed. It is first attempted to make a new sol–gel glass host based on SiO2, Al2O3, and Y2O3 doped with Er3+ ions of the composition (1−x)SiO2xAl2O3yY2O3:0.65Er2O3 (in mol%), x varies from 0 to 65, and y from 0 to 4. The optimal proportion in mol% of SiO2 and Al2O3 for the Er3+ emission (at a fixed optimal concentration of 0.65) was 65 – 35. The effect of Y2O3 content on photoluminescence, decay curve profiles and lifetime of the 4I13/2 level of Er3+ in SiO2–Al2O3 glass is observed. The largest quantum efficiency and the higher emission intensity are observed in the sample with 65Al2O3 and 4Y2O3. The emission intensity at 1530 nm is two times higher than in glasses without Y2O3. A shift of 3 nm to shorter wavelengths is observed. The emission spectral profiles are flatter and broader for the glasses containing Al and Y (bandwidth of 59.5 nm). The decay curves show strong difference profiles for the different samples. The increase of the lifetime value τ (about ms) of the 4I13/2 level of Er3+ in the SiO2–Al2O3 with the Y2O3 is discussed.  相似文献   

9.
《Journal of Crystal Growth》2006,286(1):126-130
The absorption spectra of the undoped Y2SiO5 and Eu3+-doped Y2SiO5 crystals grown by the Czochralski technique were compared before and after annealing and, similarly, the unannealed and annealed crystals after γ-ray irradiation. The absorption bands of Eu2+ ions with peaks at 300 and 390 nm were observed in the as-grown Y2SiO5:Eu3+ crystal. These peaks were more intense in H2-annealed and irradiated Y2SiO5:Eu3+ crystals. The additional absorption peaks at 260 and 320-330 nm which were attributed to F color centers and O hole centers were observed in irradiated undoped Y2SiO5 and Y2SiO5:Eu3+ crystals, respectively.  相似文献   

10.
《Journal of Non》2007,353(44-46):4102-4107
The Pr3+-doped Y4Al2O9 powders were synthesized by sol–gel method. Powder X-ray diffraction and SEM techniques were used to check for Y4Al2O9 powders. The Li+ co-doping with Pr3+ has an influence on the sintering temperature and morphology of the Y4Al2O9 powders produced from the gel. The emission spectra under different excitations, e.g., the 488 nm line of an argon-ion laser, X-ray and UV light, were investigated. The luminescence intensity of Y4Al2O9:Pr3+ could be increased with Li+ co-doping. Luminescence properties of Pr3+ ions in the two samples have some difference. In the Y4Al2O9:Pr3+, the emission at 490 nm from 3P0 is dominant, while, the Y4Al2O9:(Pr3+ + Li+) system was characterized by a red emission at 607 and 610 nm corresponding to the 1D2  3H4 inner transition of Pr3+ ions; and these two emissions show different excitation band from the 4f5d state.  相似文献   

11.
YAG crystals doped with 0.01 wt% Cr were grown by Czochralski method using 98% Ar + 2% H2 protective atmosphere. Four colour varieties of the crystals were prepared in the dependence of the Al2O3 :Y2O3 ratio in the melt and the sign of electrical potential above the melt level. New absorption bands were attributed to the O centre (400 to 480 nm), F centre (357, 500, and 833 nm) or Cr3+ at another site than octahedral (455, and 612 nm).  相似文献   

12.
Optically transparent garnet single crystals were grown from Lu3Al5O12 melts containing different RE3+ ions. The distribution coefficient of Nd3+ ions is found to be a function of the growth rate. Lu2O3–Al2O3 system studies have been partially carried out. Measurements of the lattice data, absorption spectra and comparison with some properties of Y3Al5O12 single crystals have also been made.  相似文献   

13.
Garnet crystals of the composition Gd3Ga5O12:Nd3+ (concentration series CNd = 1–10 at. %) were grown from flux. In terms of spectroscopy, these crystals, unlike those grown from melts, form medium with a single activator center. For the first time, continuous-wave lasing was excited by diode pumping with the use of Gd3Ga5O12:Nd3+ crystals at the wavelengths λ3 = 1.3315 and λ4 = 1.3370 μm of the 4F3/24I13/2 channel and also the simultaneous generation at two wavelengths, λ1 = 1.0621 and λ2 = 1.0600 μm, of the 4F3/24I11/2 channel.  相似文献   

14.
The activation of Y2O3, Gd2O3and (Y0.7,Gd0.3)2O3 with Eu3+ ions at temperatures lower than 1000 °C is studied using different starting compounds. The activator ions are introduced during the crystallization or precipitation of the precursor. Phosphors prepared from hydroxides and activated at 900 °C exhibit luminescence with high efficiency under 254 nm Hg-line excitation. Strong emission is observed even in samples activated at 700 °C. Luminescence intensity, emission and excitation spectra are compared to these of Y2O3:Eu produced by the industry.  相似文献   

15.
CsI single crystals were grown from the melt scavenged by Y3+ (YCl3) addition in 6.7·10−4–6.7·10−3 mol·kg−1 range. The addition of the scavenger amounts comparable with the total concentration of the oxygen‐containing admixtures in molten CsI results in complete destruction of the latter. Because of this, the intensity of the band with a maximum at 2.8 eV in radioluminescence spectra caused by the oxygen‐containing admixtures (anion vacancies) considerably decreases, and the fraction of the slow 2μs‐component corresponding to these admixtures becomes lower than 0.01 (0.007). The addition of larger quantities of YCl3 leads to the appearance of a wide band with a maximum at 2.8 eV caused by cation vacancies, and the intensity of the slow 2μs‐component increases to 0.02. The maximum ratio of two faster components with the decay constants equal to 7 and 30 ns reaches 0.65:0.33 at Y3+ concentration in CsI melt equal to 6.7·10‐3 mol·kg‐1, the effective luminescence time of fastest components is ca 14 ns. The dependence of the ‘Fast/Total ratio’ on Y3+ concentration passes through its maximum (0.81) corresponding to the equivalence of Y3+ and O2− concentrations in the growth CsI melt.  相似文献   

16.
Absorption and luminescent properties of a Pb3Ga2Ge4O14:Nd3+ crystal have been studied. The refractive indices are measured in the range from 0.405 to 1.064 μm, and the molecular refraction is calculated.  相似文献   

17.
Chuanguo Dou  Jun Xu 《Journal of Non》2008,354(32):3864-3866
Luminescence characteristics of Yb3+, La3+ codoped yttrium oxide nanopowders were investigated. The grain size and the crystallinity of (Yb0.05Y0.90La0.05)2O3 nanopowders increase with the increase of calcination temperature. The average grain size of the nanopowders calcined at 1100 °C is 66 nm and its cooperative up-conversion luminescence centered at 498 nm was detected due to nanometer size effect and perfect crystallinity. However, the cooperative up-conversion luminescence of (Yb0.05Y0.90La0.05)2O3 transparent ceramics was not detected.  相似文献   

18.
The luminescence behavior of composite materials consisting of nanocrystals of Y3?xAl5O12:Tb (YAG:Tb3+) embedded into silica xerogel has been studied. Blue and green luminescence of the materials is due to a cross-relaxation effect in Tb3+ ions doped into a YAG lattice. The materials with YAG:Tb3+ nanocrystals immobilized in silica exhibit enhancement of Tb3+ luminescence in comparison with the macrocrystalline YAG:Tb3+ powder. The Tb3+ luminescence intensity of a composite material dried at room temperature can be improved when higher aliphatic alcohols are applied in a one-pot procedure during a sol–gel synthesis. On the other hand, the Tb3+ luminescence is quenched in the presence of Ag nanoparticles in the material. The composite material (YAG:Tb3+ in silica) exhibits thermal stability at higher temperatures and achieves the highest emission intensity after having been annealed at 700 °C.  相似文献   

19.
(Er,Yb):YAl3(BO3)4 single crystals of optical quality, up to 15 × 10 × 10 mm3 in size, have been grown from a (Er0.023Yb0.116Y0.862)Al3(BO3)4 solution in a Y2O3-B2O3-K2Mo3O10 melt. The initial borate concentration was 17 wt %, and the flux cooling rate increased from 0.08 to 0.12°C/h in the range 1060–1000°C. The physical properties of the single crystals grown are good enough that they can be used as laser elements in systems with diode pumping and radiation near 1.5 μm.  相似文献   

20.
Crystals of solid solutions (RxY1-x)3Al5O12 (where R is rare earth ion Er3+, Yb3+, Tb3+, Ho3+, Tm3+) with garnet structure were grown. The temperature dependencies of magnetic susceptibility for these crystals were obtained. On the basis of measurement of magnetic susceptibility a non-destructive technique for determining the concentration of rare earth ions in yttrium-aluminum garnets was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号