首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of a novel 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrix-assisted laser desorption/ionization (MALDI) matrix for detection and quantitative analysis of native N-linked oligosaccharides was investigated in this study. Substantial improvements in sensitivity were observed relative to the signals obtained with a traditional DHB matrix. Moreover, the morphology of the matrix crystal layer was very uniform, unlike that of DHB. This resulted in highly homogeneous sample distribution throughout the spot, allowing reproducible and consistent mass spectra to be obtained without spot-to-spot variations in signal. Here, we also demonstrate an approach for performing sensitive and accurate quantitative analysis of native N-linked glycans with this novel matrix using an internal standard method.  相似文献   

2.
A novel matrix of isoliquiritigenin (ISL), a flavonoid with a chalcone structure (4,2′,4′-trihydroxychalcone), was demonstrated to be advantageous in the analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). With ISL as a matrix, adequate signal for an analyte can be obtained in much lower matrix concentrations and laser intensity compared to commonly used MALDI matrices. Four different sample preparation methods were tested, and the dried droplet method exhibited the best performance on MALDI-TOF-MS analysis of oligosaccharides with ISL as a matrix. For the analysis of carbohydrates, compared with popular matrices such as 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP), ISL exhibited outstanding matrix properties as follows: (1) higher homogeneity of crystallization thus allowing automatic data acquisition, (2) better spectral quality in terms of resolution and signal to noise ratio (S N−1), (3) better salt tolerance, (4) higher sensitivity, and (5) enough fragmentation yield to use LIFT-TOF/TOF MS to get richer structural information. In addition, reliable quantitative analysis of oligosaccharides with a good linearity over two concentration orders (1–100 pmol μL−1) and good reproducibility of the signal intensity (RSD less than 15%) were achieved using this matrix. These results give a new outlook on high-speed analysis of neutral carbohydrates by MALDI-TOF MS.  相似文献   

3.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The use of collision-induced dissociation, postsource decay (CID-PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of small organic molecules is demonstrated. Three pesticides: paraquat, diquat, and difenzoquat were chosen for this study. The matrices 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA), and sinapinic acid (SA) were selected to investigate the effect of the matrix on the CID-PSD MALDI spectra of these molecules. Alpha-CHCA and DHB were found to be appropriate matrices for the pesticides studied. Spectra for a given pesticide obtained from different matrices were compared with each other, and the differences between them are discussed. A comparison of CID-PSD MALDI with fast-atom bombardment MS/MS spectra is presented; the agreement of pesticide fragmentation patterns between the two methods indicates that CID-PSD MALDI MS is a reliable and efficient technique for structural elucidation of small molecules.  相似文献   

5.
The mass spectra of peptides obtained with different matrices were compared using a matrix-assisted laser desorption/ionization (MALDI) ion source and a multi-turn time-of-flight (TOF) mass spectrometer, MULTUM-IMG, which has been developed at Osaka University. Two types of solid matrices, alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), and a liquid matrix made from a mixture of 3-aminoquinoline and CHCA were used. When measuring the peak signal intensity of human angiotensin II [M+H]+ from a fixed sample position, the liquid matrix produced a stable signal over 1000 laser shots, while the signal obtained with CHCA and DHB decayed after about 300 and 100 shots, respectively. Significant differences in the mass resolving power were not observed between the spectra obtained with the three matrices. Signal peak areas were measured as a function of the cycle number in a multi-turn ion trajectory, i.e., the total flight time over a millisecond time scale. For both [M+H]+ of human angiotensin II and bovine insulin, the decay of the signal peak area was the most significant with CHCA, while that measured with DHB was the smallest. The results of the mean initial ion velocity measurements suggested that the extent of metastable decomposition of the analyte ions increased in order of DHB, the liquid matrix, and CHCA, which is consistent with the difference in the decay of the signal peak area as the total flight time increased.  相似文献   

6.
应用基体辅助激光解吸电离飞行时间质谱(MALDI-TOFMS)直接对未经分级的高聚合度(n>100)葡聚糖样品进行了测定,检测到的葡聚糖最大分子量达18000以上.对2,5-二羟基苯甲酸(DHB)、1-羟基异喹啉(1-HIQ)及3,4-二羟基肉桂酸(咖啡酸,CA)3种一元基体以及DHB与1-HIQ,DHB与CA两种二元基体在测定中的作用进行了比较.结果表明,DHB基体测定的质量范围较大;DHB+1-HIQ和DHB+CA二元混合基体对样品的解吸电离效果及谱图重现性好;DHB+1-HIQ基体获得的谱图分辨率高.  相似文献   

7.
We evaluated several aqueous-based sample preparation protocols for the analysis of poly(methacrylic acid) (PMAA) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The sample contained a pentaerythritol tetra(3-mercaptopropionate) end-group, and was characterized in positive and negative ion modes using 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP) matrices. The major series observed were the [M + Na](+) species, in positive ion mode, and the [M - H](-) species, in negative ion mode. The performance of DHB and THAP matrices was comparable in positive ion mode, but THAP outperformed DHB in negative ion mode. The use of ion-exchange beads (IXB) benefited the analysis, while the addition of sodium acetate (NaOAc) or trifluoroacetic acid (TFA) proved disadvantageous in positive ion mode.  相似文献   

8.
The behaviour of 2,5‐dihydroxybenzoic acid (2,5‐DHB) matrix under matrix‐assisted laser desorption/ionisation (MALDI) conditions was investigated, and the formation of 2,5‐DHB cluster ions, mainly dehydrated 2,5‐DHB ions, is reported. Interestingly, in the mass spectra of this compound, besides dimers and trimers, protonated tetramers, pentamers, hexamers and heptamers were also found with significant abundance. The MALDI behaviour of four flavonoids, quercetin, myricetin, luteolin and kaempferol, using 2,5‐DHB as matrix, was also investigated. The mass spectra of the flavonoids studied revealed a number of flavonoid–2,5‐DHB cluster ions (mainly with the dehydrated 2,5‐DHB). The number of clusters formed is dependent on the structure of the analyte. For luteolin and kaempferol, in particular, evidence was found for the formation of cluster ions involving retro Diels Alder fragments and intact flavonoids molecules, as well as the corresponding protonated retro Diels Alder fragments with dehydrated DHB molecules. All ion compositions were attributed taking into account high accuracy mass measurements and tandem mass spectrometry experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Selected benzoic acid derivatives and related substances were used as additives to 2,5-dihydroxybenzoic acid (2,5DHB) and the performance of the mixtures in matrix-assisted laser desorption/ionization mass spectrometry was investigated. Using benzoic acid derivatives substituted at position 2 and/or 5 or related substances as a co-matrix in the 1–10% range with 2,5DHB results in improved ion yields and signal-to-noise ratio of analyte molecules, especially for the high-mass range. The enhanced performance is prominent for 2-hydroxy-5-methoxybenzoic acid and exists for both proteins and oligosaccharides. It is suggested that the improvement is caused by a disorder in the 2,5DHB crystal lattice allowing ‘softer’ desorption. Charge transfer from matrix ions to additive molecules at the expense of analyte ionization gives a simple explanation for the deteriorating effects of some tested additives.  相似文献   

10.
Matrix-assisted laser desorption/ionization (MALDI) spectra of underivatized oligosaccharides of the type attached to asparagine in glycoproteins (N-linked oligosaccharides) were examined with linear time-of-flight (TOF) and magnetic sector instruments using 2,5-dihydroxybenzoic acid (2,5-DHB), α-cyano-4-hydroxycinnamic acid, sinapinic acid, 1,4-dihydroxynaphthalene-2-carboxylic acid or 2-(4-hydroxyphenylazo)benzoic acid (HABA) as the matrices. All compounds formed abundant [M + Na]+ ions with the strongest signals being obtained from 2,5-DHB after recrystallization of the initially dried sample spot from ethanol. Only traces of fragmentation were detected from neutral oligosaccharides on the TOF system but more abundant fragment ions (about 5% relative abundance) were present in the spectra from the magnetic sector instrument. Fragmentation was dominated by Y-type glycosidic cleavages (Domon and Costello nomenclature) between all sugar residues yielding sequence and branching information. Sialic acid-containing oligosaccharides generally produced the sodium adduct of the sodium salt and gave much weaker signals than the neutral sugars in the positive-ion mode. There was also considerable loss of the sialic acid moleties as the result of fragmentation on the magnetic sector instrument. The least fragmentation of both neutral and acidic sugars was caused by 2.5 DHB, which proved to be the most appropriate matrix for examination of oligosaccharide mixtures. Much better resolution of the oligosaccharides was obtained than by traditional methods such as the use of Bio-Gel P-4 gel filtration column chromatography. It is worth noting also that the measurements were considerably faster (a few minutes as opposed to about 16 h). In addition, no radiolabelling was necessary as required for detection on the P-4 columns. Mixtures of oligosaccharides from several glycoproteins (ribonuclease B, human immunoglobulin G (IgG) transferrin, bovine fetuin and chicken ovalbumin) were examined and the patterns of the identified oligosaccharides were found to agree closely with the known compositions of the sugar mixtures. The mass spectrometric resolution on the magnetic sector instrument was very much better (up to 3000, FWHM) than could be obtained with the linear TOF systems (200–400). The technique was used as a detection system for the products of exoglycosidase digestion in experiments to determine the detailed structure of the oligosaccharide chains from human IgG.  相似文献   

11.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) can be used to image biological samples with nanometer‐scale resolution, albeit with the drawback that it often cannot detect large molecular signals. One way to increase secondary ion molecular yield is to chemically modify the surface in the so‐called matrix‐enhanced SIMS (ME‐SIMS) approach, which is based on embedding analyte molecules in low‐weight organic matrices. In this study, a solvent‐free sample preparation technique was employed using sublimation/deposition for coating a mouse brain section with a thin layer of a 2,5‐dihydroxybenzoic acid (DHB) matrix. Using this preparation technique, signal enhancements of up to a factor of 18 could be detected. It was found that the matrix layer thickness plays an important role in the efficiency of yield enhancement. Also, a complex influence of the matrix layer on various signals was observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Negative-ion matrix-assisted laser desorption/ionization mass spectra of sialylated glycoconjugates were acquired employing 2,5-dihydroxybenzoic acid (DHB) in conjunction with spermine as a co-matrix. The addition of spermine to DHB permitted an improved crystal formation as well as a higher analyte solubility. Moreover, DHB/spermine appears to minimize alkali adduct formation, thus allowing the sample analysis without desalting. The combined matrix permitted the analysis of complex sialylated and sialylated/fucosylated structures down to the femtomole range. The ability to use such a matrix also facilitates determination of the sialic acid linkages (in combination with a specific enzyme cleavage). The matrix also appears suitable for studies on gangliosides.  相似文献   

13.
Imaging mass spectrometry is a powerful technique for the molecular analysis of tissue sections. As in many analytical methods, sample preparation is one of the main and most important steps to obtain results of good quality. Usually, the matrix concentration and solvent composition in different studies are taken for granted without any further consideration. In our studies, we aimed to find how matrix concentration and a type of solvent influence the signal. Moreover, we also aimed to find the relationship between these parameters, how they influence the spectra, and how they influence obtained ion maps. In our experiments, we used SunCollect®, which is a commercially available wet-interface system for matrix deposition. We decided to choose two matrix concentrations (2,5-dihydroxybenzoic acid [DHB]: 15 and 25 mg/mL; 9-aminoacridine [9AA]: 7 and 5 mg/mL) and two different water solutions of solvents in two different percentages for the matrices (DHB: 50% and 70% of methanol [MeOH] and acetonitrile [ACN]; 9AA 70% and 50% of ethanol [EtOH] and MeOH). In the end, the influence of these parameters on obtained spectra and ion maps was assessed.  相似文献   

14.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for qualitative and quantitative end-group analysis of a small molecular weight polyester, poly(2-butyl-2-ethyl-1,3-propylene phthalate). The presence of carboxyl-terminated linear and cyclic polyester oligomers was confirmed with the help of simple sample preparation methods. The presence of carboxyl end-groups in the polyester chains was verified through their formation of carboxylate salts with alkali metal cations. Cyclic oligomers were identified through deuterium exchange of the exchangeable protons of the polyester. Various inorganic salts were tested for salt formation of the carboxyl end-groups, but only the alkali metal salts proved effective. The influence of the alkali metal salts on the results of the quantitative end-group analysis was also studied. The relative amounts of differently terminated and cyclic oligomers were calculated when the alkali metal salts were used with different matrices. The results showed that both the salts and the matrices used in sample preparation can have a marked effect on the quantitative results of the end-group analysis. The measurements were carried out using 2,5-dihydroxybenzoic acid (DHB), 1,8, 9-trihydroxyanthracene (dithranol), and 2-(4-hydroxyphenylazo)benzoic acid (HABA) as matrix compounds. Dithranol and HABA repeatably exhibited similar results, and these results differed from those obtained with DHB probably because of the different ionization mechanisms in the MALDI process. Copyright-Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Application of two new series of ionic liquid matrices (ILMs) based on the two most predominantly used conventional organic matrices (Sinapinic acid and 2,5-DHB) in conjugation with various bases (aniline (ANI), dimethyl aniline (DMANI), diethylamine (DEA), dicyclohexylamine (DCHA), pyridine (Pyr), 2-picoline(2-P), 3-picoline(3-P)) for bacterial analysis in matrix assisted laser desorption/ionisation mass spectrometry (MALDI-MS) are reported. The results reveal that ionic liquid matrices could significantly enhance the protein signals, reduce spot-to-spot variation and increase spot homogeneity. More importantly, these novel matrices would not produce any interference during MALDI-MS analysis. Among these ILMs, 2,5-DHB/ANI, 2,5-DHB/DMANI and 2,5-DHB/Pyr can be successfully applied to intact bacterial studies compared with other ILMs. Base molecules when added to conventional matrix can promote proton transfer between the bacterial lysate and the matrices. Due to the enhanced proton transfer efficiency by the ionic liquid matrices, almost all the biomolecules of the intact bacterial cells can be ionized and detected in the MALDI-MS. All synthesized ILMs were characterized using ESI (+)/MS and UV-spectroscopy.  相似文献   

16.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The detection of phospholipids (PLs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was demonstrated nearly a decade ago. However, its use as a conventional tool for PL analysis has been hindered by ambiguities in peak assignments caused by spectral overlaps and difficulties in the detection of some PL classes when analytes with positively charged head groups, such as sphingomyelins (SMs) and phosphatidylcholines (PCs) are present. In this work, either a strong cation-exchange resin or CsCl crystals were added directly to the PL samples to reduce spectral complexity and enhance sensitivity. The quantitative exchange resulted in virtually only protonated or Cs+ adducts. To alleviate difficulties in the detection and identification of PL classes with ionization efficiencies lower than those of SMs and PCs, improvements in the sensitivity of negative-ion mass spectra were sought. For this purpose, several neutral and basic matrices were tried. Among them, p-nitroaniline (PNA) proved to be an advantageous alternative to the use of 2,5-dihydroxybenzoic acid (DHB), the most commonly used matrix in PL analysis. Because of its lower acidity, PNA increased the relative amount of deprotonated species and improved the sensitivity of negative-ion mass spectra. It was possible to confirm peak assignments for PL classes that normally give weak signals when DHB is used. Noteworthy is the detection (in both positive and negative modes) and conclusive identification of species in natural mixtures of phosphatidylethanolamines (PEs) and PE plasmalogens (PEps). PNA allowed the identification of PEs and PEps even in mixtures containing SMs and PCs. Although some cations related to PCs and PEs overlapped in positive-ion spectra, these interferences were eliminated in the negative mode as only the deprotonated forms of PEs and PEps were detectable and those of SMs and PCs were absent owing to their neutrality.  相似文献   

18.
An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules (m/z?相似文献   

19.
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Figure
?  相似文献   

20.
Mass spectrometry (MS) profiling of the proteome and peptidome for disease‐associated patterns is a new concept in clinical diagnostics. The technique, however, is highly sensitive to external sources of variation leading to potentially unacceptable numbers of false positive and false negative results. Before MS profiling can be confidently implemented in a medical setting, standard experimental methods must be developed that minimize technical variance. Past studies of variance have focused largely on pre‐analytical variation (i.e., sample collection, handling, etc.). Here, we examined how factors at the analytical stage including the matrix and solid‐phase extraction influence MS profiling. Firstly, a standard peptide/protein sample was measured automatically by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS across five consecutive days using two different preparation methods, dried droplet and sample/matrix, of four types of matrix: α‐cyano‐4‐hydroxycinnamic acid (HCCA), sinapinic acid (SA), 2,5‐dihydroxybenzoic acid (DHB) and 2,5‐dihydroxyacetophenone (DHAP). The results indicated that the matrix preparation greatly influenced a number of key parameters of the spectra including repeatability (within‐day variability), reproducibility (inter‐day variability), resolution, signal strength, background intensity and detectability. Secondly, an investigation into the variance associated with C8 magnetic bead extraction of the standard sample prior to automated MS profiling demonstrated that the process did not adversely affect these same parameters. In fact, the spectra were generally more robust following extraction. Thirdly, the best performing matrix preparations were evaluated using C8 magnetic bead extracted human plasma. We conclude that the DHAP prepared according to the dried‐droplet method is the most appropriate matrix to use when performing automated MS profiling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号