首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
First observations of a decrease in heat capacity on isothermal vitrification of a thermosetting polymer are reported. The method developed for this study allows simultaneous measurements of both the heat capacity of a material and the enthalpy released as chemical reactions occur under virtually isothermal conditions. Control experiments have been done on a nonstoichiometric composition which does not vitrify and for which total enthalpy released can be measured. During isothermal curing, the heat capacity of a thermoset first increases slightly, undergoes an abrupt decrease in a narrow range of time, and thereafter slowly decreases. The abrupt decrease represents the transition of the liquid to a glassy solid, which is irreversible and which shifts to shorter times as the curing temperature is increased. This transition occurs at different extents of cure for different temperatures. The thermodynamic consequence of kinetic slowing on irreversible conversion of a molecular liquid to a macromolecule under isothermal conditions is similar to that observed on reversible clustering, as a result of decrease in the thermal energy on supercooling a molecular liquid. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
We measured thermal diffusivity and heat capacity of polymers by laser flash method, and the effects of measurement condition and sample size on the accuracy of the measurement are discussed. Thermal diffusivities of PTFE films with thickness 200–500 μm were the same as those data that have been reported. But, the data for film thickness less than 200 μm have to be corrected by an equation to cancel thermal resistance between sample film and graphite layers for receiving light and detecting temperature. Thermal diffusivity was almost unaffected by the size of area vertical to the direction of laser pulse, because heat flow for the direction could be negligible. Specific heat capacity of polymer film was exactly measured at room temperature, provided that low absorbed energy (< 0.3 J) and enough sample mass (> 25 mg) were satisfied as measuring conditions. Thermal diffusivity curve of PS or PC versus temperature had a terrace around Tg, whereas that of PE decreased monotonously with increasing in temperature until Tm. Further, we estimated relative specific heat capacity (RCp) by calculating ratios of heat capacities at various temperatures to the one at 299 K. RCp for PS obtained by laser flash method was larger than that obtained by DSC method, whereas the RCps for PE obtained by the both methods agreed with one another until Tm (305 K). RCp for PS decreased linearly, with increase in temperature after it increased linearly until Tg (389 K), showing similarity to temperature dependency of thermal conductivity. RCp for PE also decreased until Tm, similar to thermal conductivity. ©1995 John Wiley & Sons, Inc.  相似文献   

3.
介绍了氮杂环高分子配合物及其电催化性能,归纳了含氮杂环高分子配合物的结构类型及其在界面上的自组装过程,分析了氮杂环高分子自组装膜表面化学反应的特性。对自组装技术制备超薄层材料及表面改性技术在分子电子器件等方面的应用作了评述。  相似文献   

4.
5.
We describe the construction, operation and performance of a fully automated low temperature differential micro-calorimeter for heat capacity measurements on small samples (m < 100 mg) in the temperature range from 15 K to 300 K. The instrument is operated using different calorimetric methods, in particular adiabatic differential scanning. Its reliability is demonstrated by measuring the heat capacity of 23 mg of copper and 37 mg of cyclopentane with an error of less than 2%.
Zusammenfassung Es wird der Aufbau, die Funktions- und Arbeitsweise eines vollautomatisierten Differential-Mikrokalorimeters für Wärmekapazitätsmessungen kleiner Proben (m < 100 mg) im Temperaturbereich 15–300 K beschrieben. Die Funktionsweise des Gerätes beruht auf verschiedenen kalorimetrischen Methoden, insbesondere aufadiabatischem Differential-Scanning, Seine Zuverlässigkeit wird durch die Messung der Wärmekapazität einer 23 mg-Kupferprobe und einer 37 rag-Cyclopentanprobe mit einem Me\fehler von kleiner als 2% demonstriert.
  相似文献   

6.
The absolute heat capacity and glass transition temperature (Tg) of unsupported ultrathin films were measured with differential scanning calorimetry with the step-scan method in an effort to further examine the thermodynamic behavior of glass-forming materials on the nanoscale. Films were stacked in layers with multiple preparation methods. The absolute heat capacity in both the glass and liquid states decreased with decreasing film thickness, and Tg also decreased with decreasing film thickness. The magnitude of the Tg depression was closer to that observed for films supported on rigid substrates than that observed for freely standing films. The stacked thin films regained bulk behavior after the application of pressure at a high temperature. The effects of various preparation methods were examined, including the use of polyisobutylene as an interleaving layer between the polystyrene films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3518–3527, 2006  相似文献   

7.
Takai  S.  Nakanishi  T.  Tojo  T.  Kawaji  H.  Atake  T.  Esaka  T. 《Journal of Thermal Analysis and Calorimetry》2002,69(3):805-811
Heat capacity measurements were carried out on Pb1-xLaxWO4+x/2 (x=0.2) and Pb1-xLa2x/3WO4 (x=0.2, 0.5) solid solutions prepared by sintering and mechanical alloying (MA) methods. For all the solid solutions, sintered samples showed slightly larger heat capacity around 100 K in comparison with MA samples, which was presumably caused by the excitation of mobile oxide ion motion. For sintered scheelite-type structured PbWO4s, high-temperature synthesis introduced oxide ion interstitials even for the Pb1-xLa2x/3WO4 system, which resulted in the excess heat capacity at low temperature for excitation. On the other hand, for the samples prepared by room-temperature MA technique, oxide ion seemed to occupy the regular sites rather than interstitial ones and excess heat capacities were not observed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Heterocyclic networds prepared by copolymerization of oligomeric epoxy rubber (ER) with different amounts of hexamethylene diisocyanate (HMDI) were characterized by room-temperature static Young's and bulk moduli, as well as by measurements of dynamic Young's modulus and linear thermal expansivity in the temperature interval 293–503 K. It was concluded that the major factor affecting thermoelastic properties of these networks is the relative content of three-arm, six-membered isocyanoureate rings which determine the apparent overall network density, and of two-arm, five-membered oxazolidone rings which act as a sort of internal diluent.  相似文献   

9.
Low-temperature heat capacity of the coordination compound of nickel(II) nitrate with 4-amine-1,2,4-triazole was measured in the temperature range from 11 to 317 K using a computerized vacuum adiabatic calorimeter. The thermodynamic functions have been derived from the smoothed experimental data over the whole temperature interval covered and at standard conditions. At 298.15 K, the heat capacity is 574.7±1.2 J K-1 mol-1, the entropy is 599.2±1.2 J K-1 mol-1, the enthalpy is 91070±200 J mol-1, and the reduced Gibbs energy is 293.7±1.2 J K-1 mol-1. The results on Cp(T) were compared with those for Cu(NH2trz)3(NO3)2·0.5H2O. It was revealed that the slope of the curve dCp/dT (T) changes essentially for both compounds at 110-120 K. It implies that additional degrees of freedom appear in the heat capacity at these temperatures.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
The mathematical equations for step-wise measurement of heat capacity (C p ) by modulated differential scanning calorimetry (MDSC) are discussed for the conditions of negligible temperature gradients within sample and reference. Using a commercial MDSC, applications are evaluated and the limits explored. This new technique permits the determination ofC p by keeping the sample continually close to equilibrium, a condition conventional DSC is unable to meet. Heat capacity is measured at ‘practically isothermal condition’ (often changing not more than ±1 K). The method provides data with good precision. The effects of sample mass, amplitude and frequency of temperature modulation were studied and methods for optimizing the instrument are proposed. The correction for the differences in sample and reference heating rates, needed for high-precision data by standard DSC, do not apply for this method. Presented in preliminary from at the 22nd NATAS Conference in Denver, CO 9/19-22/93 (Proceedings, pages 59–64, editor K. R. Williams).  相似文献   

11.
《Thermochimica Acta》2003,401(2):169-173
The heat capacity and the heat content of gallium nitride were measured by calvet calorimetry (320-570 K) and by drop calorimetry (670-1270 K), respectively. The temperature dependence of the heat capacity in the form Cpm=49.552+5.440×10−3T−2.190×106T−2+2.460×108T−3 was derived by the least squares method. Furthermore, thermodynamic functions calculated on the basis of our experimental results and literature data on the molar entropy and the heat of formation of GaN are given.  相似文献   

12.
One important application of temperature modulated DSC (TMDSC) is the measurement of specific heat of materials. In this paper, a thermal resistance/capacitance (R/C) numerical model is used to analyze the effects of experimental parameters and calibration on the measurement of specific heat in TMDSC under isothermal conditions. The actual TMDSC experiments were conducted with sapphire and pure copper samples, respectively. Both simulation and experiments showed that in TMDSC, the measured sample specific heat is a non-linear function of many factors such as sample mass, the heat transfer properties of the TMDSC instrument, temperature modulation period, the heat capacity difference between calibration material and the test material, but modulation amplitude has very little effect on the results. The typical behavior of a heat flux type TMDSC can be described as a low pass filter in terms of specific heat capacity measurement when the instrument heat transfer properties are taken into account. At least for metallic materials, where the temperature gradient inside the sample can normally be ignored, the sample should be chosen in such a way that its total heat capacity (mass times specific heat) is close to that of the calibration material in order to get a more accurate result. Also, a large modulation period is beneficial to improving the test accuracy.  相似文献   

13.
Heat capacity of tripeptide diglycylglycine was measured in a temperature range from 6.5 to 304 K. The results were compared with those for glycine and glycylglycine. Peptide bonding was found not to change C P(T) virtually above 70 K, where heat capacity does not obey the Debye model. Comparison with literature data allows one to expect a significant difference in the heat capacity for enantiomorph and racemic species of valine and leucine, like it was found recently for D-and DL-serine.  相似文献   

14.
An outline for the data analysis of single-run heat capacity measurments by dual sample DSC is presented with the following features: 1. Heat flow correction by subtracting the contribution due to the sample pan, including correction for mismatched pan masses. 2. Heat flow and temperature correction with a nonlinear temperature calibration, temperature lag correction, and heating rate correction. 3. Calculation of the cell constants for both cell positions and evaluation of the asymmetry factor between cell positions A and B. 4. Heat capacity calibration and calculation with slope and asymmetry correction. 5. Calculation of heat capacity for multiple runs. 6. Data curve fitting for heat capacity.This work was supported by the Division of Materials Research, National Science Foundation, Polymers Program, Grant # DMR 8818412 and the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. Thanks are given to TA Instruments, Inc. (New Castle, DE) for providing the commercial heat capacity software and helping with the acquisition of the calorimeter.  相似文献   

15.
16.
The reaction enthalpy and reaction heat capacity of three aromatic epoxy–amine systems have been determined with modulated temperature diffential scanning calorimetry (MTDSC), mostly in quasi‐isothermal conditions, over a wide temperature range (33–140 °C) and for different mixture compositions. The reaction enthalpy is only slightly dependent on the epoxy–amine chemistry, from ?111 to ?98 kJ/mol epoxy functionality. With the model system phenyl glycidyl ether (PGE)+aniline, the reaction enthalpy of the secondary amine–epoxy reaction step is equal to that of the primary amine–epoxy reaction. Group contributions needed to calculate the reaction heat capacity with an additivity approach are evaluated, and a new value of 37.2 J mol?1 K?1 for the group N? (H)(C)(CB) is proposed. With this group contribution, the additivity method predicts almost equal values for the reaction heat capacity of both amine–epoxy reaction steps at 298.15 K (ΔrCp,prim = 15.7 J mol?1 K?1 and ΔrCp,sec = 14.6 J mol?1 K?1), whereas the experimental value of ΔrCp,sec is about three times larger than that of ΔrCp,prim at 100 °C. These results are confirmed experimentally for PGE+aniline as a different temperature dependence of both reaction heat capacities. MTDSC therefore is potentially interesting for differentiating between reactive species in an epoxy–amine reaction, a benefit previously assigned to spectroscopic methods only. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 594–608, 2003  相似文献   

17.
The low temperature heat capacity of UF(3) has been measured using an adiabatic low temperature calorimeter in the temperature range from 10 to 350 K. These data are complemented at the lowest temperature region with data obtained with a Quantum Design PPMS-14 device in the temperature range from 0.5 to 20 K. Good agreement between both techniques has been found, and from these experimental results the absolute entropy of UF(3) at 298.15 K has been determined as 126.8 ± 2.5 J K(-1) mol(-1). On the basis of the specific heat data and the magnetization measurements performed on a SQUID device, a transition at 1.59 K attributed to Curie temperature of a ferromagnetic transition has been found in this study. This observation makes UF(3) a unique compound with an unusually low ferromagnetic ordering temperature.  相似文献   

18.
Synthetic enstatite MgSiO3 was crystallized from a melt, quenched into water, and then annealed at 873 K. The product is the monoclinic polymorph with the unit cell parameters of a=0.9619(7), b=0.8832(3), c=0.5177(4) nm, β=108.27(5)°. Heat capacity was measured from 6 to 305 K using an adiabatic vacuum calorimeter. Thermodynamic functions for clinoenstatite differ by about 5% from those predicted after a thermodynamic model in the literature, but are very close to those measured for orthorhombic enstatite.  相似文献   

19.
Modulated differential scanning calorimetry (MDSC) uses an abbreviated Fourier transformation ?r the data analysis and separation of the reversing component of the heat flow and temperature signals. In this paper a simple spread-sheet analysis will be presented that can be used to better understand and explore the effects observed in MDSC and their link to actual changes in the instrument and sample. The analysis assumes that instrument lags and other kinetic effects are either avoided or corrected for.  相似文献   

20.
Enthalpies of dilution of tetrabutylammonium butyrate are reported as a function of temperature between 10° and 50°C. Heat capacities of aqueous solutions of tetrabutylammonium butyrate were measured in order to obtain values of cp at 15°, 25°, and 35°C. These data were combined with the enthalpy of dilution data to obtain cp as a function of molality and temperature. The apparent molal heat content L decreased with increasing temperature in concentrated solutions but increased with increasing temperatures in dilute solutions (below0.7 m). Over the temperature range studied cp shows a maximum as a function of molality at approximately 0.5m. The decrease in cp with increasing concentration of hydrophobic solute is consistent with the view that the hydrophobic hydration cages, formed under the influence of the tetrabutylammonium and butyrate ions, are saturated at about 0.5m, and that at higher molalities increased overlap of the hydration cages occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号