首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Component-Resolved methodology was applied to 1H spin-echo and 27Al–1H cross polarization (CP) MAS NMR data of aluminosilicate glasses. The method was able to resolve two components with different T2 relaxation rates, hydroxyl groups (OH) and molecular water (H2Omol), from the spin-echo data and to determine partial spectra and the relative abundances of OH and H2Omol. The algorithm resolved two to three components with different 27Al–1H CP dynamics from the 27Al–1H cross polarization data; the obtained partial NMR spectra for Al–OH are in excellent agreement with those obtained previously from the difference spectra between spectra with various contact times and confirm previous quantitative results and models for the Al–OH, Si–OH and H2Omol speciation (Malfait and Xue, 2010).  相似文献   

2.
The NMR spin-lattice relaxation time, TI, has been measured as a function of temperature for both 7Li and 27Al in pure and doped β-LiAl alloys. Compositions with 7Li concentration in the range 48.3–54.5% and doping in the form Li50Al50?xMx, where M = Ag or In, were studied. The relaxation rates T1?1 for the 27Li and the 27Al resonances were found to be peaked functions of temperature with the maxima for 7Li appearing at composition dependent temperatures. The 27Al maxima always appeared at a lower temperature, independent of composition, and the 27Al maximum relaxation rate was a strong function of composition in contrast with 7Li where the maximum rate was only weakly dependent on composition. The principle relaxation mechanisms are identified as dipole-dipole coupling in the 7Li and coupling of the 27Al quadrupole moment to electric field gradients. The temperature dependence of these rates is attributed to the thermally activated diffusion of vacancies of a non-thermal origin in the Li sub-lattice. These vacancies are also responsible for the fluctuating electric field gradients. The results have been analyzed to give the Li diffusion coefficients with associated activation energies and estimates of the vacancy concentration as functions of alloy composition.  相似文献   

3.
We have used optical spin orientation techniques to measure T1 of conduction electrons in GaAs (NinA ≈ 1017 cm-3) for 4.7 K ? T ? 200 K. From Hall effect measurements we estimated the electron momentum relaxation time τp. For 50 K ? T ? 200 K, the product T1τp agrees with our earlier order of magnitude estimate of the D'yakonov-Perel' mechanism, in which band structure induced precession is strongly narrowed by momentum relaxation. The Elliott mechanism is one to two orders of magnitude weaker.  相似文献   

4.
The 13C–1H CPMAS with flip-back pulse NMR experiment is revisited in view of applications to pharmaceutical mixtures. The analysis of the kinetics of relaxation and CP transfer with and without the flip-back pulse shows that a significant gain in 13C signal can be expected (thus in experimental time) from the flip-back pulse for protons with long T1. The gain is of the order of T1 of the protons expressed in seconds. The experiment is applied on samples with highly contrasted spin-lattice relaxation times T1 for protons, situation encountered in pharmaceutical mixtures. The application of the flip-back increases significantly the relative signal intensity of the component with the longer T1, making this component detectable even after using short recycle delays. Therefore, this CPMAS with flip-back experiment could be used routinely to get 13C CPMAS NMR spectra of mixtures in constant experimental time and signal-to-noise ratio without the need for optimization of the recycle delays, and for whatever may be the degree of crystallinity of the active principal ingredient (API) and/or excipients.  相似文献   

5.
Reactor produced131Cs (T 1/2=9.7 d) was used to investigate the isotope shift against the stable nuclide133Cs in the resonance lines of the Cs I spectrum. Special techniques to prepare the hollow cathode and a completely digitalized method of measuring and evaluation of the hyperfine structure made it possible to investigate short-lived isotopes with high accuracy. The following results were obtained:Δv IS(133?131; 6p 2 P 1/2?6s 2 S 1/2)=?0,39 (9) mKΔv IS(133?131; 6p 2 P 3/2?6s 2 S 1/2)=?0,28 (20) mK.  相似文献   

6.
The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. 29Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) 29Si{1H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q4 ((≡SiO)4 Si) and Q3 ((≡SiO)3 SiOH). Spin–lattice relaxation times T 1 measurements of 29Si nuclei and analysis of 29Si{1H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell.  相似文献   

7.
Electric quadrupole coupling constant eqQ/h of the extremely proton-rich 23Al (I π ?=?5/2?+?, T 1/2?=?0.47 s) nucleus implanted into an Al2O3 single crystal has been measured for the first time, using the β-ray detecting nuclear quadrupole resonance method (β-NQR) in a high magnetic field. As a preliminary result, the quadrupole coupling constant was determined as |eqQ/h(23Al) |?=?2.66±0.77 MHz. Using the quadrupole coupling constant of 27Al in Al2O3 as a reference, the Q moment of the ground state of 23Al was extracted as |Q(23Al)|?~?160 mb, which is well explained by the shell model calculation in the sd-shell model space with the USD interaction.  相似文献   

8.
Spin-lattice relaxation time (T1) of 29Si nuclei in several Ni-silicides (Ni1?xSix:0.25?x?0.67) were studied at low temperature (1.4?T?4.2 K) by spin-echo technique. The relation of T1T = const. and also very short T1 were observed indicating that the silicides studied were metallic with enough densities of state of 3s-electrons at the Fermi energy (EF). Another feature of the results was that T1 decreased with the increment of silicon concentration. This effect was discussed in connection with the soft X-ray spectroscopy (SXS) data on Ni-silicides and Ni—Al compounds.  相似文献   

9.
The 1H spin-lattice relaxation time T1 has been measured in the α-VHx. It is found that T1 in the α-phase is essential ly determined by contact hyperfine interactions, and its variation with hydrogen concentration is in accord with a rigid-band model.  相似文献   

10.
27Al and55Mn nuclear magnetic resonance shift,K, and27Al spin lattice relaxation time,T 1, have been measured for the six-dimensional face-centered icosahedral quasicrystals, Al75-x Pd15Mn10+x withx=0, 2 and7. The Al75Pd15Mn10 quasicrystal exhibits a temperature independent Knight shiftK and(T 1 T)–1=0.022±0.002 (K s)–1 in a temperature range from room temperature to 5 K because there exist no Mn atoms with local magnetic moment. The replacement of Al with Mn drastically decreases the27AlK, the55MnK andT 1 of27Al, andthe27AlK becomes negative. There is an additional contribution to the spin lattice relaxation time independent of temperature. This is considered to be due to the presence of a localized magnetic moment in the replaced Mn atoms.  相似文献   

11.
The diffusion of Al in a Cu: 3.8 at % Al alloy has been investigated by observing the rotating-frame nuclear magnetic relaxation time T of 27Al as a function of temperature. It is shown that relaxation measurements of the solute atoms in a dilute alloy provide the correlation time of the diffusive motion of these atoms, if quadrupolar interactions form the main contribution to the relaxation time. From the correlation times the Al-diffusion coefficient in the alloy has been determined.  相似文献   

12.
The variations with temperature of the line-shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in NH4HSeO4 single crystals were investigated, and with these 1H NMR results we were able to distinguish the crystals’ “ammonium” and “hydrogen-bond” protons. The line width of the signal due to the ammonium protons abruptly narrows near the temperature of the superionic phase transition, TSI, which indicates that they play an important role in this phase transition. The 1H T1 for NH4+ and HSeO4 in NH4HSeO4 do not change significantly near the ferroelectric phase transition of TC1 (=250 K) and the incommensurate phase transition of Ti (=261 K), whereas they change near the temperature of the superionic phase transition TSI (=400 K). Our results indicate that the main contribution to the low-temperature phase transition below TSI is that of the molecular motion of ammonium and hydrogen-bond protons, and the main contribution to the conductivity at high temperatures above TSI is the breaking of the O-H?O bonds and the formation of new H- bonds in HSeO4. In addition, we compare these results with those for the NH4HSO4 and (NH4)3H(SO4)2 single crystals, which have similar hydrogen-bonded structure.  相似文献   

13.
14.
The crystal structure and phase transition temperature of [N(C2H5)4]2CuBr4 are studied using X-ray diffraction and differential scanning calorimetry (DSC); measurements revealed a tetragonal structure and the two phase transition temperatures TC of 204 K and 255.5 K. The structural geometry near TC is discussed in terms of the chemical shifts for 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups are distinguishable by the 13C NMR spectrum. The molecular motions are discussed in terms of the spin–lattice relaxation times T in the rotating frame for 1H MAS NMR and 13C CP/MAS NMR. The T results reveal that the ethyl groups undergo tumbling motion, and furthermore that the ethyl groups are highly mobile.  相似文献   

15.
We investigated the temperature dependences of the line shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in (NH4)4LiH3(SO4)4 single crystals. On the basis of the data obtained, we were able to distinguish the “ammonium” and “hydrogen-bond” protons in the crystals. For both the ammonium and hydrogen-bond protons in (NH4)4LiH3(SO4)4, the curves of T1 and T2 versus temperature changed significantly near the ferroelastic and superionic phase transitions at TC (=232 K) and TS (=405 K), respectively. In particular, near TS, the 1H signal due to the hydrogen-bond protons abruptly narrowed and the T2 value for these protons abruptly increased, indicating that these protons play an important role in this superionic phase transition. The marked increase in the T2 of the hydrogen-bond protons above TS indicates that the breaking of O-H?O bonds and the formation of new H-bonds with HSO4- contribute significantly to the high-temperature conductivity of (NH4)4LiH3(SO4)4 crystals.  相似文献   

16.
The spectral absorption coefficient of methane at 3.392μ has been measured in the temperature range 965 ?T, °K≤2710 behind incident and reflected shock waves. It is given by the relation P'=P'0(T0/T)n where P'0=(1.34±0.58)x102cm-1atm-1 at T0=300°K and n=2.88±0.21. The empirically determined temperature exponent n may be approximately accounted for by a simplified theoretical analysis.  相似文献   

17.
We present 27Al NMR studies for a single crystal of the Np-based superconductor NpPd5Al2. We have observed a five-line 27Al NMR spectrum with a center line and four satellite lines separated by first-order nuclear quadrupole splittings. The Knight shift clearly drops below Tc. The temperature dependence of the 27Al nuclear spin-lattice relaxation rate shows no coherence peak below Tc, indicating that NpPd5Al2 is an unconventional superconductor with an anisotropic gap. The analysis of the present NMR data provides evidence for strong-coupling d-wave superconductivity in NpPd5Al2.  相似文献   

18.
The emission from a high gain pencil-shaped volume of inhomogeneously broadened (T12) and initially completely inverted two-level atoms is described fully quantum-mechanically taking into account propagation along the pencil axis. The emission is shown to be superfluorescence for T12 ? √τRτD and amplified spontaneous emission for τR ? T12 ? √τRτD, where τR and τD are the collective decay time and the delay time of pure (T12 = ∞) superfluorescence, respectively.  相似文献   

19.
The 27Al nuclear magnetic resonance (NMR) response of a series of natural and synthetic corundum (α-Al2O3) samples is studied quantitatively by short-pulse excitation and frequency-stepped adiabatic half-passage (FSAHP). Using on- and off-resonance nutation NMR, it was established that the quadrupole coupling parameters of visible Al is identical in all samples. Remarkably, the relaxation behavior for the aluminum is very different in the various samples and has a marked effect on the quantitative response. In natural corundum samples the 27Al spin-lattice relaxation is very efficient as these samples contain paramagnetic impurities. As a result, however, the full signal could not be recovered, which is attributed to relaxation broadening of spins in the vicinity of these impurities. In synthetic samples, containing no impurities, the full signal could be recovered, although the relaxation behaviour appeared to depend strongly on the preparation method. We observed differences in the spin-lattice relaxation by a factor 20; the longest T1 was observed in a crushed single crystal. This implies that α-Al2O3 can only be used as a standard in quantitative analyses if it has been characterized thoroughly. Furthermore, the effective relaxation behaviour for different types of excitation is studied. Finally, a method to measure the spin-lattice relaxation of half-integer quadrupole nuclei is introduced, using a frequency-stepped adiabatic passage (FSAP) to invert the spin system.  相似文献   

20.
NMR measurements of proton spin-lattice relaxation times T1 and T1? in the layered intercalation compounds TiS2(NH3)1.0 and TaS2(NH3)x (x = 0.8, 0.9, 1.0) are reported as functions of frequency and temperature (100 K – 300 K). These observations probe the spectral density of magnetic fluctuations due to motions of the intercalated molecules at frequencies accessible to the T1 (4–90 MHz) and T1? (1–100 kHz) measurements. Since the average molecular hopping time (τ) can be changed by varying temperature, different regions of the spectral density can be examined. For T > 200 K, both T?11 and T?11? vary logarithmically with frequency, reflecting the two dimensional character of the molecular diffusion. The temperature dependence of T1 suggests that a more accurate picture of the short time dynamics is required. No dependence of relaxation rate on vacancy concentration is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号