首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
27Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were acquired at 8.45, 14.1 and 16.45 T for a series of aluminium borates with the mullite structure (Al6−x B x O9, where x has nominal values of 1 to 4) augmented with 27Al multiple-quantum MAS NMR spectra at 8.45 T. Even though the 27Al NMR spectra are complex, simulation of the combined set of data produced a relatively well-defined set of parameters (e.g., quadrupolar interaction, isotropic chemical shift, etc.) for each site. The 11B MAS NMR spectra of the same compounds were also acquired at 14.1 T. Linear changes in the X-ray a-, b- and c-cell parameters with composition suggest that these compounds constitute a continuous series. Based on a Rietveld structural refinement of the compound synthesized as Al4B2O9, the resulting site occupancies and relative site distortions allow the identification of particular sites with specific NM resonances. Changes in the 27Al and 11B MAS NMR spectra of the related compounds with x = 1–4 show at the lowest Al contents a greater degree of asymmetry in the Al sites of the octahedral chains. A fairly distorted cross-linking tetrahedral site, which persists throughout the composition range, is accompanied in the lower Al compositions by two 5-fold coordinated Al–O units which are replaced by two more-regular tetrahedral Al–O sites as the Al content increases. In the compounds of lowest Al composition (i.e., highest B content) both the tetrahedral and trigonal cross-linking sites are distinguishable, but as the Al content increases, the BO4 units progressively disappear. Authors' address: Kenneth J. D. MacKenzie, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand  相似文献   

2.
Although high-resolution NMR spectra can be obtained in solids, the use of27Al NMR to investigate the structure of aluminosilicate and aluminophosphate molecular sieves has been severely limited because anisotropic second-order quadrupolar interactions, responsible for spectral broadening, cannot be eliminated by conventional magic angle spinning (MAS) or multiple pulse techniques. Here we give the principles of the double rotation (DOR) NMR technique which can remove not only the first-order broadenings but also the second-order broadenings in the NMR spectra of quadrupolar nuclei in solids. High-resolution27Al NMR using DOR is capable of resolving discrete framework aluminum sites in aluminophosphate molecular sieves, permitting quantitative investigation of site-specific adsorbate-host interactions, and of discriminating different aluminum species in zeolites.  相似文献   

3.
There have been great improvements in the quality of27Al NMR spectra from solids over the last decade. The impact of this technique on structure determination for a wide range of solids is briefly reviewed. Emphasis is placed on the effects arising from the presence of the quadrupolar interaction and strategies that allow unambiguous spectral interpretation. It is demonstrated that in addition to the chemical shift, the quadrupolar interaction itself can be a rich source of local information about solids. The insight obtained from27Al NMR into atomic level structure often contains surprises, such that previous models of structure and properties have to be reassessed.  相似文献   

4.
The measurement and analysis of broad nuclear magnetic resonance (NMR) spectra of quasicrystals require experimental methods and theoretical interpretations different from NMR investigations of regular periodic crystals. Frequency- and field-sweep methods for recording quasicrystalline NMR spectra are described and compared with the measurement of27Al NMR spectra of icosahedral AlPdMn and decagonal AlNiCo quasicrystals. The nuclear spin interactions that determine the NMR line shape are the same for both types of the above Al-based quasicrystals, where the electric quadrupolar interaction with the broad distribution of its electric field gradient parameters predominantly determines the shape of the broad satellite “background” intensity. The essential observations are an almost isotropic27Al NMR spectrum of the icosahedral quasicrystals and a strong angular dependence of the spectrum of decagonal quasicrystals.  相似文献   

5.
In this work, we combine 27Al, 29Si, 19F, and 23Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to characterize the structure and interlayer cation environments in a strontium-saturated member of the swelling mica family before and after a heat-induced collapse of the interlayer space. The 27Al and 29Si MAS NMR demonstrate that the sample consists mainly of swelling mica, though the composition does not match the ideal structural formula. Aluminum NMR also shows that a portion of the aluminum shifts from a tetrahedral to an octahedral coordination environment upon heating. Changes in the 29Si and 19F NMR after heating are consistent with a structural rearrangement of the tetrahedral sheet to permit the binding of larger cations in the ditrigonal cavity. The 23Na MAS NMR results indicate the presence of three unique sodium environments before and after heating. The heat-invariant resonance is consistent with the presence of sodium carbonate. The other two resonances are associated with interlayer sodium and reflect a migration of sodium to a dominantly anhydrous ditrigonal binding structure with heating. Quantitative elemental analysis and NMR data presented here suggest strontium is bound deep within the ditrigonal cavity of the collapsed micas. Authors' address: Karl T. Mueller, 104 Chemistry Building, Penn State University, University Park, PA 16802, USA  相似文献   

6.
A combination of 27Al magic-angle spinning (MAS)/multiple-quantum (MQ) MAS, and 27Al–{14N} TRAnsfer of Population in DOuble-Resonance (TRAPDOR) nuclear magnetic resonance (NMR) was used to study aluminium environments in zeolite ZSM-5. 27Al–{14N} TRAPDOR experiments, in combination with 14N NMR were employed to show that the two tetrahedral peaks observed in the 27Al MAS/3Q-MAS spectra of as-synthesized ZSM-5 are due to aluminium atoms occupying crystallographically inequivalent T-sites. A 13C–{27Al} TRAPDOR experiment was used to study the template, tetrapropyl ammonium bromide (TPABr), in the three-dimensional pore system of ZSM-5. The inequivalency of the methyl groups of TPA was observed in the 13C–{27Al} TRAPDOR spectra of as-synthesized ZSM-5 and the motion of the methyl end of the propyl chain appeared to be more restricted in the sinusoidal channel than in the straight channel.  相似文献   

7.
The complexes between Al(III) and hematein, the main coloring matter in alum logwood inks, were characterized by Raman and 27Al NMR (nuclear magnetic resonance) spectroscopies. Raman spectra of the crystallized complexes and of the compounds applied on a paper substrate are presented and assigned based on published data for the parent compounds. These Raman spectra show that the coordination of the hematein to the Al(III) ions takes place in both cases through the carbonyl and hydroxyl groups in the molecule, and that the aromatic rings are also involved in the interaction. The Raman spectra of the pure hematein–Al(III) complexes were found to be consistent with those recorded for a logwood ink prepared following a late 19th century recipe, using logwood chips instead of pure hematein, and applied on a paper substrate. These spectra can be used as references for the noninvasive identification of the compounds in works of art. 27Al solid‐state NMR showed that the coordination of the Al(III) atoms in the crystallized powder is predominantly octahedral, while when applied on a paper substrate the colorant is present mainly as a tetrahedral complex, with an octahedral coordination also present in a smaller proportion. The fact that the predominant coordinations for the complexes in the crystallized material and for the ones present on the paper substrate are different is relevant for the study of the lightfastness and thermal stability of works of art bearing these media. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
29Si, 27Al, 1H and 23Na solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) has been used to relate nominal composition, bonding character and compressive strength properties in aluminosilicate inorganic polymers (AIPs). The 29Si chemical shift varies systematically with Si-to-Al ratio, indicating that the immediate structural environment of Si is altering with nominal composition. Fast 1H MAS and 29Si T SiH/T relaxation measurements demonstrated that occluded pore H2O mobility within the disordered cavities is slow in comparison with H2O mobility characteristics observed within the ordered channel structures of zeolites. The 27Al MAS NMR data show that the Al coordination remains predominantly 4-coordinate. In comparison with the 29Si MAS data, the corresponding 27Al MAS line shapes are relatively narrow, suggesting that the AlO4 tetrahedral geometry is largely unperturbed and the dominant source of structural disorder is propagated by large distributions of Si–O bond angles and bond lengths. Corresponding 23Na MAS and multiple-quantum MAS NMR data indicate that Na speciation is dominated by distributions of hydration states; however, more highly resolved 23Na resonances observed in some preparations supported the existence of short-range order. New structural elements are proposed to account for the existence of these Na resonances and an improved model for the structure of AIPs has also been proposed. Authors' address: John V. Hanna, NMR Facility, Institute of Materials and Engineering Science, Lucas Heights Research Laboratories, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia  相似文献   

9.
A five-channel (1H, 19F, 31P, 27Al, 13C) 2.5 mm magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is used in combination with three separate receivers for the parallel acquisitions of one (1D) and two-dimensional (2D) NMR spectra in model fluorinated aluminophosphate and porous Al-based metal-organic framework (MOF). Possible combinations to record simultaneously spectra using this set-up are presented, including (i) parallel acquisitions of quantitative 1D NMR spectra of solids containing nuclei with contrasted T1 relaxation rates and (ii) parallel acquisitions of 2D heteronuclear NMR spectra. In solids containing numerous different NMR-accessible nuclei, the number of NMR experiments that have to be acquired to get accurate structural information is high. The strategy we present here, i.e. the multiplication of both the number of irradiation channels in the probe and the number of parallel receivers, offers one possibility to optimize this measurement time.  相似文献   

10.
We have employed soft (Gaussian) pulses to examine27Al NMR signals arising from Al3+bound to ovotransferrin. In addition to enhancing the general detectability of27Al signals from a practical standpoint, this technique makes it possible to invert the central component of the protein-bound27Al signals, providing a route for, to our knowledge, the first inversion-recovery measurements on such systems. The suitability of this approach for gaining insights into the nature of metal ion binding sites in large metalloproteins is critically assessed.  相似文献   

11.
29Si NMR spectra of layer silicates with a wide range of tetrahedral composition (Si/Al ratios from 7.7 to 2.7) indicate that Si, Al distribution is mainly controlled by the electrostatic requirement of homogeneous dispersion of Al, confirming our earlier conclusions derived from the analysis of natural samples of micas with Si/Al ratios near to 3. This requirement includes, as a partial aspect, the Loewenstein's rule which forbids the presence of Al in neighbouring tetrahedra.  相似文献   

12.
27Al solid-state NMR has been applied to study the local structure of pristine and chemically modified aluminium layered double hydroxides (LDH). The pristine LDH only shows six-fold coordinated, octahedral, aluminium, while the calcined and subsequently surfactant treated LDH sample shows a significant fraction of four-fold coordinated tetrahedral aluminium. The co-existence of two types of octahedral sites with different quadrupolar parameters is clearly observed in both samples. Quadrupolar coupling constants and isotropic chemical shifts have been measured from the 27Al triple-quantum MAS NMR allowing to fit the 27Al MAS spectra and quantify the different species in the samples. The quantitative analysis reveals that 30% of the aluminium is in four-fold coordination in the surfactant-modified LDH. We show that this chemical modification retains the two types of AlO6 sites with a decreased intensity of the site showing the lowest quadrupolar coupling constant.  相似文献   

13.
We report 13C–27Al double resonance experiments (REDOR and TRAPDOR) on several aluminum organic compounds with the aim of detecting 13C–27Al dipolar couplings and distances in solids. The 13C and 27Al pulses are applied to the same probe channel because their resonance frequencies are in close proximity. The different possibilities of controlling the efficiency of the TRAPDOR approach (by varying the 27Al RF amplitude and the MAS frequency) are investigated. The results indicate that TRAPDOR is superior to REDOR in resolving differences in 13C–27Al distances when choosing the proper experimental conditions. Where known, the crystal structure data are in qualitative agreement with the distance information extracted from our experiments. The experiment should be very valuable in different fields of solid state chemistry, where the interaction of organic and inorganic sample fractions is of fundamental importance.  相似文献   

14.
The dealumination of a commercial Y zeolite by contact with SiCl4 is monitored with NMR spectroscopy of29Si,27Al and129Xe. The results are interpreted in terms of the changes in the material as silicon is incorporated in the framework and aluminum is deposited in the pores.  相似文献   

15.
Recent results obtained at the institute of Catalysis from studies of heterogeneous catalysis using high-resolution1H,13C,15N,27Al,29Si,31P and51V solid state NMR have been summarized. Emphasis is made on: (1) structural studies of active in catalysis compounds and sites in supported oxides, hydrides and inorganic acids; (2) studies of structures and properties of surface OH groups active in Bronsted acid catalysis; (3) studies of Lewis acidity of heterogeneous catalysts using15N NMR of adsorbed N2O and (4) studies of adsorption mechanisms for molecules of reactants over various catalysts.  相似文献   

16.
In this contribution, we present the application potentiality of biaxial Q-shearing of 27Al 3QMAS NMR spectra in the analysis of structural defects of aluminium units in aluminosilicates. This study demonstrates that the combination of various shearing transformations of the recorded 27Al 3QMAS NMR spectra enables an understanding of the broadening processes of the correlation signals of disordered framework aluminosilicates, for which a wide distribution of 27Al MAS NMR chemical shifts and quadrupolar parameters (i.e., second-order quadrupolar splitting and quadrupole-induced chemical shifts) can be expected. By combining the suitably selected shearing transformation procedures, the mechanisms of the formation of local defects in aluminosilicate frameworks, including Al/Si substitution effects in the next-nearest neighbouring T-sites, variations in bond angles, and/or variations in the physicochemical nature of charge-balancing counter-ions, can be identified. The proposed procedure has been extensively tested on a range of model aluminosilicate materials (kyanite, γ-alumina, metakaolin, analcime, chabazite, natrolite, phillipsite, mordenite, zeolite A, and zeolite Y).  相似文献   

17.
Structural modification of sodium aluminophosphate (NAP) glasses with TiO2 addition has been investigated using Raman and MAS-NMR (31P and 27Al) spectroscopy. TiO2 incorporated NAP glasses having composition (mol%): 40Na2O-10Al2O3-xTiO2-(50−x)P2O5 (x=0-20), are prepared by conventional melt quench method. The low-frequency Raman spectrum suggests an increase in the average ionic character of phosphate glass network with addition of TiO2. Raman and 31P MAS-NMR revealed that the glasses without TiO2, consist mainly metaphosphate (Q2) structural units. These are gradually converted into pyrophosphate (Q1) and orthophosphate (Q0) structural units along with the formation of P-O-Ti/P-O-Al linkages. 27Al MAS-NMR revealed the change in coordination of Al from octahedral (AlO6) to tetrahedral (AlO4) for TiO2 above 10 mol%. Raman spectra indicate that TiO2 enters the network in the form of octahedral (TiO6) and tetrahedral (TiO4) structural units and at high concentration of TiO2, tetrahedral structural units are more favourable. Various thermo-physical properties e.g. density (ρ), molar volume (Vm), glass transition temperature (Tg), microhardness (MH), and thermal expansion coefficient (TEC) have been measured as a function of TiO2 content. Variations in the thermo-physical properties are correlated with these structural modifications in the phosphate structural units and consequently changes in the average ionic character of phosphate glass network.  相似文献   

18.
Using an electrostatic analyzer-lens as a monochromator the energy-widthΔE of the thermionically emitted electrons was significantly reduced to 10 meV at 10 keV primary energy. According to theoretical conclusions there results a dependence ofΔE with primary energyE asE 3/2. The arrangement was used for investigations of energy-loss-spectra of solids (Al and Ag) and gases (Ar).  相似文献   

19.
Nuclear magnetic resonance (NMR) techniques for measuring one-dimensional absorption spectra and two-dimensional exchange spectra of solids with extremely inhomogeneously broadened lines are discussed. Among various “broad-line” solids, quasicrystals represent alloys of metallic elements, the structures of which include “forbidden” symmetry elements. NMR absorption lines of quasicrystals exhibit a strong electric-quadrupole-induced inhomogeneous broadening that originates from the lack of translational periodicity of the otherwise perfectly long-range-ordered quasiperiodic lattice. Recording an NMR spectrum of a quasicrystalline sample requires a magnetic field-sweep technique. The two-dimensional exchange experiment on quasicrystals can be performed on selectively excited portions of the NMR spectrum only. Due to the off-resonance effects in a selective excitation, the use of a simple three-pulse stimulated-echo exchange sequence is preferred. The27Al spectra of the Al-Pd-Mn and Al-Pd-Re families show interesting features like temperature-dependent frequency shifts and exchange effects due to atomic motion.  相似文献   

20.
Two-dimensional 27Al multiple-quantum magic angle spinning (MQMAS) NMR experiments are used to study mixtures of bayerite (α-Al(OH)3) with either silicic acid (SiO2.nH2O) or silica gel (SiO2) that have been ground together for varying lengths of time. This mechanical treatment produces changes in the 27Al MAS and MQMAS NMR spectra that correspond to the formation of new Al species. Mean values of the quadrupolar interaction (PQ) and isotropic chemical shift (δCS) are extracted from the two-dimensional 27Al NMR spectra for each of these species. The presence of significant distributions of both 27Al quadrupolar and chemical shift parameters is demonstrated and the effect of grinding duration on the magnitudes of these distributions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号