首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M RIAZIAN  A BAHARI 《Pramana》2012,78(2):319-331
TiO2 Nano rods can be used as dye-sensitized solar cells, various sensors and photocatalysts. These nanorods are synthesized by a hydrothermal corrosion process in NaOH solution at 200°C using TiO2 powder as the source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti7O13 phases and synthesis of TiO2 nanorods by incorporating SiO2 dopant, using the sol–gel method and alkaline corrosion are reported. The morphologies and crystal structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) study. The obtained results show not only an aggregation structure at high calcination temperatures with spherical particles but also Ti–O–Si bonds having four-fold coordination with oxygen in SiO4 − .  相似文献   

2.
Anatase is the low-temperature (300–550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7–1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.  相似文献   

3.
CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.  相似文献   

4.
Poly(N-vinyl caprolactam) (PNVCL) side chains were grafted to a poly(vinyl chloride) (PVC) backbone via atom transfer radical polymerization. The synthesized PVC-g-PNVCL graft copolymer was templated for the preparation of porous TiO2 thin films, which involved a sol–gel reaction and calcination process. The interaction of the carbonyl groups in the PVC-g-PNVCL with the titania was revealed by FT-IR spectroscopy. X-ray diffraction and transmission electron microscopy analysis showed the formation of porous TiO2 thin films with the anatase phase. A series of porous TiO2 thin films with different pore sizes and porosities was prepared by varying the solution compositions and were used as photoelectrodes in dye-sensitized solar cells (DSSC) with a polymer electrolyte. The DSSC performed best when using the TiO2 film with higher porosity, lower interfacial resistance, and longer electron life time. The highest energy conversion efficiency, photovoltage (V oc), photocurrent density (J sc), and fill factor (FF) were 1.2%, 0.68 V, 3.2 mA/cm2, and 0.57 at 100 mW/cm2, respectively, for the quasi-solid state DSSC with a 730-nm-thick TiO2 film.  相似文献   

5.
A series of nanosized Bi2WO6 catalysts was synthesized using various starting materials, and they were characterized by X-ray diffractometry, transmission electron microscopy, and diffuse reflectance spectroscopy. Rhodamine-B (RhB) photodegradation in aqueous medium was employed as a probe reaction to test the photoactivity of the as-prepared samples. Dependence of the photocatalytic activities on different contents of the starting materials was examined under visible irradiation (λ > 400 nm). The sample prepared in the following conditions: reaction time 24 h, the pH of the solution 7, the Bi3+ amount in the start precipitates 5 mmol — exhibited the highest photochemical activity when the hydrothermal temperature was settled at 180°C. Published in Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 2, pp. 243–249, Martch–April, 2009.  相似文献   

6.
A sonochemical method is developed to fabricate SnO2 nanotubular materials from biological substances (here, it is cotton). The cotton fibers in SnCl2 solution were first treated with ultrasonic waves in air, followed by calcinations to give nanotubular materials that faithfully retain the initial cotton morphology. The microstructure and morphology of the obtained SnO2 nanotubules were characterized by the combination of field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and N2 adsorption/desorption measurements. The thermal behavior and crystalline properties were examined in the temperature range of 450–700 °C. The nanocrystals composing of SnO2 nanotubules were estimated about 8.5, 13.2, and 14.2 nm corresponding to calcination temperatures of 450, 550, and 700 °C, respectively. The sensor performance of biomorphic SnO2 nanotubules calcined at 700 °C was investigated in the atmosphere of ethanol, formaldehyde, carbinol, carbon monoxide, hydrogen, ammonia, and acetone, respectively, which exhibited a good selectivity for acetone at a working temperature of 350 °C. The sensitivity to 20 ppm acetone, S, was 6.4 at 350 °C with rapid response and recovery (around 10–9 s). These behaviors were well explained in relation to the morphology of the nanotubules thus produced.  相似文献   

7.
Polyaniline (PANI)–TiO2 nanocomposites possessing both nano and microscale structures were prepared through a facile hydrothermal route in the presence of PANI. The nanopapilla particles were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectra, X-ray diffraction, FTIR spectra, UV–Vis spectroscopy, and N2 adsorption analysis, etc. The results show that the composites possess both nano and microscale structures. The TiO2 nanorods are dispersed on PANI with one end fixed to the surface. The photocatalytic properties of the powders were verified by the photodegradation of gaseous acetone under UV (λ = 254 nm) and visible-light irradiation (λ > 400 nm). In fact, the photocatalytic effects exhibited by the composite particles were superior to that of pure TiO2 and P25 samples. This excellent behavior is attributed to the structural features of PANI–TiO2 microspheres and the synergistic effect between PANI and TiO2 which facilitates a larger amount of surface active sites. This in turn causes a faster charge separation and slower charge recombination which results in a more efficient decomposition of gaseous pollutants.  相似文献   

8.
The effect of plasticizer and TiO2 nanoparticles on the conductivity, chemical interaction and surface morphology of polymer electrolyte of MG49–EC–LiClO4–TiO2 has been investigated. The electrolyte films were successfully prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by sol-gel process and was added into the MG49–EC–LiClO4 electrolyte system. Alternating current electrochemical impedance spectroscopy was employed to investigate the ionic conductivity of the electrolyte films at 25 °C, and the analysis showed that the addition of TiO2 filler and ethylene carbonate (EC) plasticizer has increased the ionic conductivity of the electrolyte up to its optimum level. The highest conductivity of 1.1 × 10−3 Scm−1 was obtained at 30 wt.% of EC. Fourier transform infrared spectroscopy measurement was employed to study the interactions between lithium ions and oxygen atoms that occurred at carbonyl (C=O) and ether (C-O-C) groups. The scanning electron microscopy micrograph shows that the electrolyte with 30 wt.% EC posses the smoothest surface for which the highest conductivity was obtained.  相似文献   

9.
In this study, nanocrystalline CoFe2O4 particles with porous timber-like superstructure were synthesized by a modified chemical co-precipitation route with calcination temperatures of 573, 673, 773, 873, and 973 K, respectively. The structural properties of the samples were systematically investigated by X-ray powder diffraction, scanning electronic microscopy, energy-dispersive X-ray spectra, UV–Vis diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage (SPV) measurement. The photocatalytic performances of the CoFe2O4 samples were comparatively studied by the degradation of 4-chlorophenol under Xe lamp irradiation. The results indicated that the sample calcined at 673 K exhibited the highest photocatalytic efficiency among the five samples.  相似文献   

10.
Nanosized LaFeO3 with large specific surface area has been successfully synthesized by an impregnation process, with mesoporous silica SBA-16 as hard template and corresponding metal nitrates as La and Fe resources, and the resulting LaFeO3 is also characterized by thermogravimetry–differential thermal analysis (TG–DTA), X-ray diffraction (XRD), N2 adsorption–desorptions, Brunauer Emmett Teller (BET) technique, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflection spectrum (UV–Vis DRS), and surface photovoltage spectroscopy (SPS). It is found that, compared with that prepared by the conventional citrate method, the as-prepared LaFeO3 with 20-50 nm particle size has remarkable large specific surface area, even still with the surface area as large as about 85 m2 g−1 after calcination at 800 °C, which is attributed to its mesoporous structure as well as the small particle size. During the photocatalytic degradation of Rhodamine B solution under visible irradiation, all the LaFeO3 samples obtained are superior to P25 TiO2, and the activity becomes high with increasing calcination temperature. It is revealed that the excellent photocatalytic performance is mainly ascribed to the large surface area and high photogenerated charge separation rate.  相似文献   

11.
SiO2-TiO2 films [Si:Ti = 1:(0.06–2.3)] are obtained by the sol-gel method. The structural and photoluminescent properties of the films and powders heat-treated at different temperatures are studied. It is shown that after 700°C the composite consists of TiO2 crystallites that are structurally similar to anatase and distributed in an amorphous SiO2 matrix. The photoluminescence spectra have maxima at 450–500 nm. The photoluminescence intensity depends on the treatment temperature and TiO2 content. __________ Translated from Zhurnal Prikladnoi Spektroskopii Vol. 74, No. 3, pp. 357–361, May–June, 2007.  相似文献   

12.
Self-organized anodic TiO2 nanotube arrays were sensitized with polyaniline by a simple electrodeposite method. The morphological and structural properties studied by scanning electron microscopy and fourier transform infrared spectroscopy reveal the successful deposition of polyaniline on the nanotube arrays. The polyaniline-sensitized TiO2 nanotube arrays exhibit a distinguishable red shift on the absorption spectrum. Electrochemical impedance investigation attested to a significant improvement of the interfacial electron-transfer kinetics for promoted electron–hole effective separation. The as-prepared samples showed a high efficiency for the photoelectrocatalytic degradation of rhodamine B under visible-light irradiation (λ > 400 nm). The enhanced photoelectrocatalytic activity could be attributed to the extended absorption in the visible-light region by the polyaniline and the effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the polyaniline/TiO2 nanotube arrays interface.  相似文献   

13.
A precursor of TiO2–LiCo1/3Ni1/3Mn1/3O2 was prepared by electrostatic self-assembly method. The final product was obtained by heating the precursor at 400–450 °C for 4–6 h in air. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical tests were used to examine the structural, morphology, elementary valence, and electrochemical characteristics. XRD indicated that the TiO2-coated material can be indexed by α-NaFeO2 layered structure, which belongs to hexagonal-type space group R3m. XPS results confirmed the existence of TiO2 compound on the surface of the coated sample. The SEM image showed that the material had spherically porous morphology with the uniform size about 6 μm. The initial charge–discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 material was 168.8/160.0 mAh/g. After 60 cycles, the discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 sample was 147.0 mAh/g, and the coulombic efficiency was 94.0%. Compared with the uncoated sample, the electrochemical performance of TiO2-coated LiCo1/3Ni1/3Mn1/3O2 was improved.  相似文献   

14.
The influence of the vanadium load and calcination temperature on the structural characteristics of the V2O5/TiO2 system was studied by X-ray diffraction and X-ray absorption spectroscopy (XAS) techniques. Samples of the V2O5/TiO2 system were prepared by the sol–gel method under acid conditions and calcined at different temperatures. The rutile phase was found to predominate in pure TiO2 calcined at 450 °C as a result of the reduction of phase transition temperature promoted by the sol–gel method under acid conditions. The anatase phase became predominant at 450 °C as the amount of vanadium increased from 6 to 9 wt%. A structural change in the TiO2 phase from predominantly anatase to totally rutile with increased calcination temperature was observed in 6 wt% samples. An analysis of the vanadium X-ray Absorption Near Edge Structure (XANES) spectra showed that the oxidation state of vanadium atoms in the samples containing 6 and 9 wt% of vanadium and calcined at 450 °C was predominantly V4+. However, the presence of V5+ atoms cannot be ruled out. A qualitative analysis of extended X-ray absorption fine structure (EXAFS) spectra of the samples containing 6 and 9 wt% of vanadium calcined at 450 °C showed that the local structure around vanadium atoms is comparable to that of VO2 crystalline phase, in which vanadium atoms are fourfold coordinated in a distorted structure. For the sample after calcination at 600 °C, the EXAFS and XANES results showed that a significant portion of vanadium atoms were incorporated in the rutile lattice with a VxTi(1−x)O2 solid solution formation. The conditions of sample preparation used here to prepare V2O5/TiO2 samples associated with different amounts of vanadium and calcination temperatures proved to be useful to modifying the structure of the V2O5/TiO2 system.  相似文献   

15.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

16.
In this work, amorphous and crystalline TiO2 films were synthesized by the sol–gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.  相似文献   

17.
BaCO3 and anatase-type TiO2 were adopted as initial materials to prepare BaTiO3 powder by the solid-state reaction method at a heating rate of 350°C/h. The electron paramagnetic resonance (EPR) technique was employed to monitor the formation of BaTiO3. TiO2 showed a series of complicated EPR signals associated primarily with Fe impurities. The formation of BaTiO3 can be monitored in terms of the evolution of EPR signals associated with Fe impurities with calcination and measurement temperatures. The activation of the g = 2.004 signal above the Curie point of BaTiO3 and the disappearance of the other EPR signals in the BaCO3/TiO2 mixture at room temperature are characteristic of the formation of BaTiO3.  相似文献   

18.
Materials that contain a photocatalyst have a semi-permanent capacity for removing harmful gases from the ambient air. It is the purpose of this study to investigate the photocatalytic activity of commercial paints containing TiO2 nanoparticles towards NO and NO2. Experiments were carried out in a stainless steel (30 m-3) walk-in type environmental chamber (Indoortron), under “real world setting” conditions of temperature, relative humidity, irradiation and pollutant concentrations. Two types of nanoparticle TiO2-containing paints were tested for their depolluting properties: a mineral silicate paint and a water-based styrene acrylic paint. The results showed a significant effect of TiO2-materials in reducing NOx. It was found that up to 74% of NO and 27% of NO2 were photo-catalytically degraded by the mineral silicate paint, while degradation percentage using the styrene acrylic paint reached 91% and 71% for NO and NO2, respectively. The photo-catalytic rate of NO on the mineral and styrene acrylic paint was calculated to 0.11 μg m-2 s and 0.18 μg m-2 s, respectively, indicating higher photocatalytic performance of the organic based material. The effect of relative humidity (RH) was also investigated. An increase of RH from 20% to 50% inhibited the NOx photocatalysis on the surface of the samples. PACS 81.16.Hc; 81.65.Mq; 82.33.Tb; 82.50.Hp; 82.65.+r  相似文献   

19.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

20.
Nanosized IrO2 electrocatalysts (d ~ 7–9 nm) with specific surface area up to 100 m2 g−1 were synthesized and characterized for the oxygen evolution reaction in a solid polymer electrolyte (SPE) electrolyzer. The catalysts were prepared by a colloidal method in aqueous solution and a subsequent thermal treatment. An iridium hydroxide hydrate precursor was obtained at ~100 °C, which was, successively, calcined at different temperatures from 200 to 500 °C. The physico-chemical characterization was carried out by X-ray diffraction (XRD), thermogravimetry–differential scanning calorimetry (TG–DSC) and transmission electron microscopy (TEM). IrO2 catalysts were sprayed onto a Nafion 115 membrane up to a loading of 3 mg cm−2. A Pt catalyst was used at the cathode compartment with a loading of 0.6 mg cm−2. The electrochemical activity for water electrolysis of the membrane-electrode assemblies (MEAs) was investigated in a single cell SPE electrolyzer by steady-state polarization curves, impedance spectroscopy and chrono-amperometric measurements. A maximum current density of 1.3 A cm−2 was obtained at 1.8 V and 80 °C for the IrO2 catalyst calcined at 400 °C for 1 h. A stable performance was recorded in single cell for this anode catalyst at 80 °C. The suitable catalytic activity and stability of the most performing catalyst were interpreted in terms of proper combination between nanostructure and suitable morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号