首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manufacturers in a wide range of industries nowadays face the challenge of providing a rich product variety at a very low cost. This typically requires the implementation of cost efficient, flexible production systems. Often, so called mixed-model assembly lines are employed, where setup operations are reduced to such an extent that various models of a common base product can be manufactured in intermixed sequences. However, the observed diversity of mixed-model lines makes a thorough sequence planning essential for exploiting the benefits of assembly line production. This paper reviews and discusses the three major planning approaches presented in the literature, mixed-model sequencing, car sequencing and level scheduling, and provides a hierarchical classification scheme to systematically record the academic efforts in each field and to deduce future research issues.  相似文献   

2.
The paper deals with the two most important mathematical models for sequencing products on a mixed-model assembly line in order to minimize work overload the mixed-model sequencing (MMS) model and the car sequencing (CS) model. Although both models follow the same underlying objective, only MMS directly addresses the work overload in its objective function. CS instead applies a surrogate objective using so-called sequencing rules which restrict labor-intensive options accompanied with the products in the sequence. The CS model minimizes the number of violations of the respective sequencing rules, which is widely assumed to lead to minimum work overload. This paper experimentally compares CS with MMS in order to quantify the gap in the solution quality between both models. The paper studies several variants of CS with different sequencing rule generation approaches and different objective functions from the literature as well as a newly introduced weighting factor. The performance of the different models is evaluated on a variety of random test instances. Although the objectives of CS and MMS are positively linearly correlated, results show that a sequence found by CS leads to at least 15% more work overload than a solution found by MMS. For none of the considered test instances and for none of the three different objective functions, CS is able to produce competitive results in terms of solution quality (work overload) compared to MMS. The results suggest that decision makers using CS should investigate whether MMS would lead to better sequencing orders for their specific instances.  相似文献   

3.
This paper presents novel approaches for generating sequencing rules for the car sequencing (CS) problem in cases of two and multiple processing times per station. The CS problem decides on the succession of different car models launched down a mixed-model assembly line. It aims to avoid work overloads at the stations of the line by applying so-called sequencing rules, which restrict the maximum occurrence of labor-intensive options in a subsequence of a certain length. Thus to successfully avoid work overloads, suitable sequencing rules are essential. The paper shows that the only existing rule generation approach leads to sequencing rules which misclassify feasible sequences. We present a novel procedure which overcomes this drawback by generating multiple sequencing rules. Then, it is shown how to apply both procedures in case of multiple processing times per station. For both cases analytical and empirical results are derived to compare classification quality.  相似文献   

4.
We study a paced assembly line intended for manufacturing different products. Workers with identical skills perform non-preemptable operations whose assignment to stations is known. Operations assigned to the same station are executed sequentially, and they should follow the given precedence relations. Operations assigned to different stations can be performed in parallel. The operation’s processing time depends on the number of workers performing this operation. The problem consists in assigning workers to operations such that the maximal number of workers employed simultaneously in the assembly line is minimized, the line cycle time is not exceeded and the box constraints specifying the possible number of workers for each operation are not violated. We show that the general problem is NP-hard in the strong sense, develop conventional and randomized heuristics, propose a reduction to a series of feasibility problems, present a MILP model for the feasibility problem, show relation of the feasibility problem to multi-mode project scheduling and multiprocessor scheduling, establish computational complexity of several special cases based on this relation and provide computer experiments with real and simulated data.  相似文献   

5.
In this paper, flexible job shop scheduling problem with a new approach, overlapping in operations, is discussed. In many flexible job shops, a customer demand can be released more than one for each job, where demand determines the quantity of each finished job ordered by a customer. In these models each job has a demand more than one. This assumption is an important and practical issue for many flexible job shops such as petrochemical industries. To consider this assumption, we use a new approach, named overlapping in operations. In this approach, embedded operations of each job can be performed due to overlap considerations in which each operation may be overlapped with the others because of its nature. The overlapping is limited by structural constraints, such as the dimensions of the box to be packed or the capacity of the container used to move the pieces from one machine to the next. Since this problem is well known as NP-Hard class, a hierarchical approach used simulated annealing algorithm is developed to solve large problem instances. Moreover, a mixed integer linear programming (MILP) method is presented. To evaluate the validity of the proposed SA algorithm, the results are compared with the optimal solution obtained with the traditional optimization technique (The Branch and Bound method). The computational results validate the efficiency and effectiveness of the proposed algorithm. Also the computational results show that the overlapping considering can improve the makespan and machines utilization measures. So the proposed algorithm can be applied easily in real factory conditions and for the large size problems and it should thus be useful to both practitioners and researchers.  相似文献   

6.
The car sequencing problem is the ordering of the production of a list of vehicles which are of the same type, but which may have options or variations that require higher work content and longer operation times for at least one assembly workstation. A feasible production sequence is one that does not schedule vehicles with options in such a way that one or more workstations are overloaded. In variations of the problem, other constraints may apply. We describe and compare three approaches to the modeling and solution of this problem. The first uses integer programming to model and solve the problem. The second approaches the question as a constraint satisfaction problem (CSP). The third method proposes an adaptation of the Ant Colony Optimization for the car sequencing problem. Test-problems are drawn from CSPLib, a publicly available set of problems available through the Internet. We quote results drawn both from our own work and from other research. The literature review is not intended to be exhaustive but we have sought to include representative examples and the more recent work. Our conclusions bear on likely research avenues for the solution of problems of practical size and complexity. A new set of larger benchmark problems was generated and solved. These problems are available to other researchers who may wish to solve them using their own methods.  相似文献   

7.
A scheduling model for a production system including machining, setup and assembly operations is considered. Production of a number of single-item products is ordered. Each product is made by assembling a set of several different parts. First, the parts are manufactured in a flow-shop consisting of multiple machines. Then, they are assembled into products on a single assembly stage. Setup operation and setup time are needed when a machine starts processing the parts or it changes items. The operations are partitioned into several blocks. Each block consists of the machining operations, the setup operations, and the assembly operation(s) for one or several products. The parts of the same item in a block are processed successively. The objective function is the mean completion time for all products. We consider a problem to partition the operations into blocks and sequence the parts in each block so as to minimize the objective function. Solution procedures using pseudo-dynamic programming and a branch-and-bound method are proposed. Computational experiments are carried out to evaluate the performance of the solution procedures. It has been found that a good near-optimal schedule is obtained efficiently by the proposed solution procedures.  相似文献   

8.
We present a mathematical formulation and a heuristic solution approach for the optimal planning of delivery routes in a multi-modal system combining truck and Unmanned Aerial Vehicle (UAV) operations. In this system, truck and UAV operations are synchronized, i.e., one or more UAVs travel on a truck, which serves as a mobile depot. Deliveries can be made by both UAVs and the truck. While the truck follows a multi-stop route, each UAV delivers a single shipment per dispatch. The presented optimization model minimizes the waiting time of customers in the system. The model determines the optimal allocation of customers to truck and UAVs, the optimal route sequence of the truck, and the optimal launch and reconvene locations of the UAVs along the truck route. We formulate the problem as a Mixed-Integer Linear Programming (MILP) model and conduct a bound analysis to gauge the maximum potential of the proposed system to reduce customer waiting time compared to a traditional truck-only delivery system. To be able to solve real-world problem size instances, we propose an efficient Truck and Drone Routing Algorithm (TDRA). The solution quality and computational performance of the mathematical model and the TDRA are compared together and with the truck-only model based on a variety of problem instances. Further, we apply the TDRA to a real-world case study for e-commerce delivery in São Paulo, Brazil. Our numerical results suggest significant reductions in customer waiting time to be gained from the proposed multi-modal delivery model.  相似文献   

9.
Make-to-order (MTO) operations have to effectively manage their capacity to make long-term sustainable profits. This objective can be met by selectively accepting available customer orders and simultaneously planning for capacity. We model a MTO operation of a job-shop with multiple resources having regular and non-regular capacity. The MTO firm has a set of customer orders at time zero with fixed due-dates. The process route, processing times, and sales price for each order are given. Since orders compete for limited resources, the firm can only accept some orders. In this paper a Mixed-Integer Linear Program (MILP) is proposed to aid an operational manager to decide which orders to accept and how to allocate resources such that the overall profit is maximized. A branch-and-price (B&P) algorithm is devised to solve the MILP effectively. The MILP is first decomposed into a master problem and several sub-problems using Dantzig-Wolfe decomposition. Each sub-problem is represented as a network flow problem and an exact procedure is proposed to solve the sub-problems efficiently. We also propose an approximate B&P scheme, Lagrangian bounds, and approximations to fathom nodes in the branch-and-bound tree. Computational analysis shows that the proposed B&P algorithm can solve large problem instances with relatively short time.  相似文献   

10.
The stochastic pooling problem is a type of stochastic mixed-integer bilinear program arising in the integrated design and operation of various important industrial networks, such as gasoline blending, natural gas production and transportation, water treatment, etc. This paper presents a rigorous decomposition method for the stochastic pooling problem, which guarantees finding an ${\epsilon}$ -optimal solution with a finite number of iterations. By convexification of the bilinear terms, the stochastic pooling problem is relaxed into a lower bounding problem that is a potentially large-scale mixed-integer linear program (MILP). Solution of this lower bounding problem is then decomposed into a sequence of relaxed master problems, which are MILPs with much smaller sizes, and primal bounding problems, which are linear programs. The solutions of the relaxed master problems yield a sequence of nondecreasing lower bounds on the optimal objective value, and they also generate a sequence of integer realizations defining the primal problems which yield a sequence of nonincreasing upper bounds on the optimal objective value. The decomposition algorithm terminates finitely when the lower and upper bounds coincide (or are close enough), or infeasibility of the problem is indicated. Case studies involving two example problems and two industrial problems demonstrate the dramatic computational advantage of the proposed decomposition method over both a state-of-the-art branch-and-reduce global optimization method and explicit enumeration of integer realizations, particularly for large-scale problems.  相似文献   

11.
Production optimization of gas-lifted oil wells under facility, routing and pressure constraints is a challenging problem, which has attracted the interest of operations engineers aiming to drive economic gains and scientists for its inherent complexity. The hardness of this problem rests on the non-linear characteristics of the multidimensional well-production and pressure-drop functions, as well as the discrete routing decisions. To this end, this work develops several formulations in Mixed-Integer Linear Programming (MILP) using multidimensional piecewise-linear models to approximate the non-linear functions with domains spliced in hypercubes and simplexes. Computational and simulation analyses were performed considering a synthetic but realistic oil field modeled with a multiphase-flow simulator. The purpose of the analyses was to assess the relative performance of the MILP formulations and their impact on the simulated oil production.  相似文献   

12.
This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.  相似文献   

13.
In this paper, we study the multi-machine scheduling problem with earliness and tardiness penalties and sequence dependent setup times. This problem can be decomposed into two subproblems—sequencing and timetabling. Sequencing focuses on assigning each job to a fixed machine and determine the job sequence on each machine. We call such assignment a semi-schedule. Timetabling focuses on finding an executable schedule from the semi-schedule via idle-time insertion. Sequencing is strongly NP-hard in general. Although timetabling is polynomial-time solvable, it can become a computational bottleneck if the procedure is executed many times within a larger framework. This paper makes two contributions. We first propose a quantum improvement to the computational efficiency of the timetabling algorithm. We then apply it within a squeaky wheel optimization framework to solve the sequencing and overall problem. Finally, we demonstrate the strength of our proposed algorithms by experiments.  相似文献   

14.
张燕  周支立 《运筹与管理》2009,18(6):136-145
多联票据的印刷过程包括排版、单联印刷和多联配页与装订三个过程。该过程是柔性的流水生产线与装配混合的生产系统。本文研究了该系统中的票据印刷生产调度问题,目标是最小化所有产品的最大完成时间(Makespan)。该问题到目前为止还没有人研究,本文首先建立了该问题的混合整数规划模型,然后提出了该模型的求解方法,并给出了该问题的下界。最后的量化示例和算例试验表明本文的模型是有效的。  相似文献   

15.
This paper considers the problem of optimally sequencing different car models along an assembly line according to some contiguity constraints, while ensuring that the demands for each of the models are satisfied. This car sequencing problem (CSP) is a practical NP-hard combinatorial optimisation problem. The CSP is formulated as a nonlinear integer programming problem and it is shown that exact solutions to the problem are difficult to obtain due to the indefinite quadratic form of the CSP objective function. Two traditional heuristics (steepest descent and simulated annealing) are employed to solve the CSP approximately. Several Hopfield neural network (HNN) approaches are also presented. The process of mapping an optimisation problem onto a HNN is demonstrated explicitly, and modifications to the existing neural approaches are presented which guarantee feasibility of solutions. Further modifications are proposed to improve the solution quality by permitting escape from local minima in an attempt to locate the global optimum. Results from all solutions techniques are compared on a set of instances of the CSP, and conclusions drawn.  相似文献   

16.
The numerical performance of the state-of-the-art simplex based optimizers is good. At the same time, a newly arising LP problem can cause troubles still. This is exactly what happened in the Summer of 1992. The appearance of a hard LP problem motivated the development of the idea of a numerically exact implementation of the simplex method. It is based on a super register (SR) capable of accumulating inner products with arbitrary accuracy. The necessary operations of SR that require assembly level programming are introduced. Vectors of super registers would require prohibitively much memory. Therefore, a single-SR technique is proposed that entails the reorganization of parts of the simplex method. The ideas have been implemented in the MILP LP optimizer. Experiences show that solution speed decreases by 30–50 percent but robustness increases which may be important in case of critical problems. A framework is outlined for a system where the advantages of the traditional and the SR technique can co-operate efficiently.This research was partly supported by Hungarian Research Fund OTKA 2587.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(17-18):4493-4511
In mixed-product assembly line sequencing, the production resources required for the assembly lines should be scheduled to minimize the overall cost and meet customer demand. In this paper, we study an assembly line sequencing problem for the door-lock industry in Taiwan and develop an integer programming formulation with realistic constraints. The complex solution space makes the resulting program difficult to solve using commercial optimization packages. Therefore, a heuristic based on the Lagrangian relaxation principle is developed to solve this problem efficiently. We evaluate the efficiency of the developed Lagrangian relaxation heuristic by comparing its solutions with those obtained using a commercial optimization package: the computational results show that the developed heuristic solves the real-world problem faster than the optimization package by almost 15 times in CPU time at a comparable solution quality.  相似文献   

18.
This paper considers a manufacturing cell composed of a machining center and several parallel downstream production stations. In the machining center, there is an ample supply of raw material for a number of different part-types. For each type, parts are first processed in the machining center, and then in one of parallel production stations (one for each type). The decision to determine which type to produce (production sequence) occurs whenever the machining center completes the process of a part. The production sequencing rules under consideration are rotation rules and random rules, respectively. By using such rules, the resulting product-mix meets a preset level. Based on a decomposition technique, solution procedures are developed to compute the response time of parallel stations in the manufacturing cell using such product-mix sequencing rules. Numerical examples are given to demonstrate the solution procedures and to investigate the impact of the production sequence on the overall average response time.  相似文献   

19.
The build-to-order supply chain (BTO-SC) or make-to-order (MTO) system has received a great deal of attention in recent years because of the success of high-tech companies such as Dell, BMW, Compaq, and Gateway. Some auto companies have also implemented BTO-SC. Quite a few research articles have been written on BTO-SC and MTO. However, those that explicitly address the problems of BTO-SCM with modeling are rather limited in number. Considering the growing importance of more informed and timely decision making in these areas, there is a need to encourage further research on the modeling and analysis of global outsourcing, optimization between product variants and the cost of production, the point of differentiation along the production/assembly process, the selection of suppliers, logistics costs, and customer relationship management. Traditional operations research models have been used to solve supply chain management problems. Considering the importance of BTO or MTO, an attempt has been made to review the selected literature on the modeling and analysis of BTO-SC with the objectives of providing assistance to and motivating both researchers and practitioners to design, develop, and manage BTO-SC effectively; and suggesting some future research directions on BTO supply chain management (BTO-SCM). The literature available on BTO-SCM has been classified based on the nature of the decision-making areas and then sub-classified to focus on solving problems with modeling and analysis. We have focused mostly on the modeling aspect of the BTO-SC, but have not extended our efforts to empirical research. We have developed a unified framework for modeling and analyzing BTO-SCM and suggest some future research directions.  相似文献   

20.
This paper is a study of the car sequencing problem, when feature spacing constraints are soft and colors of vehicles are taken into account. Both pseudo-polynomial algorithms and lower bounds are presented for parts of the problem or family of instances. With this set of lower bounds, we establish the optimality (up to the first non-trivial criteria) of 54% of best known solutions for the benchmark used for the Roadef Challenge 2005. We also prove that the optimal penalty for a single ratio constraint N/P can be computed in O(P) and that determining the feasibility of a car sequencing instance limited to a pair of simple ratio constraints can be achieved by dynamic programming. Finally, we propose a solving algorithm exploiting these results within a local search approach. To achieve this goal, a new meta-heuristic (star relinking) is introduced, designed for the optimization of an aggregation of criteria, when the optimization of each single criterion is a polynomial problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号