首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Single crystals of CuCl · C6H4N3(OC3H5)(I) are synthesized by ac electrochemical method from Cu(II) chloride and 1-allyloxybenzotriazole in ethanol solution and their unit cell parameters are determined: space group P21/a a=11.583(4) , b=11.443(7) , c=8.620(4) , =108.77(3)°, V=1082(2) 3, R(F)=0.0366, R w (F)=0.0396 for 1095 reflections. In the structure of -complex I, inorganic fragment Cu2Cl2 forms centrocymmetric parallelogram. A molecule of 1-allyloxybenzotriazole acts as a bridge, which is bonded to the Cu atoms of two inorganic dimers through the C=C bond of the allyl group and to the N atom of a triazole ring. Owing to this bridging function, the ligand molecules form zigzag organometallic layers. The trigonal-pyramidal coordination sphere of a metal atom includes two Cl atoms and the C=C group. The structural motif of complex I significantly differs from that of the previously studied 2CuCl · C6H4N3(OC3H5) and resembles the motif of a bromide analog Cu2Br2 · [C6H4N3(OC3H5)]2.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 364–369.Original Russian Text Copyright © 2005 by Goreshnik, Myskiv.  相似文献   

2.
A novel organic-inorganic hybrid compound based on weak intermolecular interactions formulated as Ni(H2Bibzim)3Cl2 · 2H2O (H2Bibzim = 2,2-bibenzimidazole, formula, C14H10N4) has been synthesized under hydrothermal conditions and characterized by elemental analysis, single-crystal X-ray diffraction analyses, and IR spectra. It crystallizes in the orthorhombic system, space group Pbcn, Z = 2, a = 20.8530(19), b = 15.7838(14), c = 12.3159(11) Å, V = 4053.7(6) Å3, M r = 1736.84, ρc = 1.423g/cm3, λ = 0.71073 Å, μ(MoK α) = 0.664 mm?1, F(000) = 1792, R = 0.0283 and wR = 0.0707 for 3746 observed reflections with I > 2σ(I). The complex is composed of mononuclear cations [Ni(H2Bibzim)3]2+, chlorine anions, and lattice water molecules, which are linked into a two-dimensional supramolecular architectures via hydrogen bonds and π-π-stacking interactions.  相似文献   

3.
Single crystals of Mg pivalate hydrate, Mg(H2O)6(Piv)2 · 3H2O (HPiv = (CH3)3CCOOH) are synthesized and their structure is determined by X-ray diffraction method. The crystals are rhombic: a = 10.917(2) Å, b = 12.625(2) Å, c = 31.394(8) Å, Z = 8, space group Pbca, R 1 = 0.0525. The Mg atom has octahedral surrounding of the O atoms of water molecules (Mg-O 2.044–2.137 Å). The cationic chains of [Mg(H2O)6] 2+ lie in the voids of doubled network anionic layers of [(H2O)3(Piv)2] ∞∞ 2? . Inside the layer, the pivalate anions alternate with water molecules in the xy plane, being bonded to them by hydrogen bonds. The cationic chains and the anionic layers are united into layered packs by hydrogen bonds between coordinated water molecules and pivalate anions and between coordinated and crystal hydrate water molecules.  相似文献   

4.
The reaction of the trinuclear oxo-centered mixed-valence complex [Mn3O(O2CPh)6(Py)2(H2O)] with 2,2′-bipyridyl (Bipy) and another potential tripodal ligand affords the title compound [Mn3(PhCO2)6(Bipy)2] · H2O in good yield. The X-ray crystallographic diffraction study reveals that three mangenese ions are arranged in a linear mode with Mncenter-Mnterminal and Mnterminal-Mnterminal diatances of 3.588 and 7.176 Å, respectively. Molar magnetic susceptibility of the compound gradually decreases from 12.23 (300 K) to 4.45 cm3 K mol?1 (2 K). Taking into account the structure of this compound, the data in the 2.0–300 K range were fit to the appropriate theoretical expression to give J = ?2.73 cm?1, ρ = 2.07%, N a = ?0.0004 cm3 mol?1, g = 1.992, and R 2 = 0.99996. The magnetization versus external magnetic field measurements at 2 K shows that the ground state is S T = 5/2.  相似文献   

5.
Single crystal X-ray diffraction study of glycine phosphite C2H5NO2·H3PO3 was performed (monoclinic, space group P21/c, a = 7.401(3) Å, b = 8.465(3) Å, c = 9.737(3) Å; β = 100.73(5)°, Z = 4). It has been found that one of hydrogen atoms is located at the centre of symmetry forming two strong hydrogen bonds to yield H4P2O 6 ?2 dimers, while another hydrogen atom is statistically disordered over two positions and organizes the dimers into an infinite corrugated chain. The ordering of this hydrogen atom position and/or displacement of the other one from the centre of symmetry will lead to the loss of symmetry centre and lowering of the point group symmetry from C2h to piezo-active group C2 or C s .  相似文献   

6.
Synthesis, X-ray diffraction, IR and luminescence spectroscopic studies of the monohydrate of pentachloroantimonate(III) of doubly protonated ciprofloxacin (C17H19N3O3F)SbCl5 · H2O (I) were performed. The structure of I is formed by SbCl6 octahedra combined into polymeric chains [SbCl5] n 2n? through common vertices, ciprofloxacinium cations (CfH3)2+, and water molecules linked by hydrogen bonds. CfH is protonated at the carbonyl oxygen atom and the terminal nitrogen atom of the piperazinyl group. The electronic and geometric aspects determining the luminescence properties of I and of related compounds are discussed.  相似文献   

7.
The title compound, cobalt 4′,7-diethoxylisoflavone-3′-sulfonate([Co(H2O)6](X)2⋅8H2O, X = C19H17O4SO3) was synthesized and its structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic space group P-1 with cell parameters a = 9.026(3) Å, b = 16.431(5) Å, c = 18.195(6) Å, α = 72.289(4), β = 87.498(4), γ = 82.775(5), V = 2550.1(13) Å−3, Dc = 1.419 Mg m−3, and Z = 2. The results show that the title compound consists of one cobalt cation, six coordinated water molecules, eight lattice water molecules, and two 4′,7-diethoxylisoflavone-3′-sulfonate anions, C19H17O4SO3. Two anions have different conformations. Twelve H atoms of six coordinated water molecules, as donors, form hydrogen bonds with four oxygen atoms of sulfo-groups of two anions and eight oxygen atoms of eight lattice water molecules. In addition, π < eqid1 > ⋅ < eqid2 > π stacking interactions exist in the crystal structure, which together with hydrogen bonds lead to supramolecular formation with a three-dimensional network.  相似文献   

8.
The clathrate [Zn(C6H5COO)2(H2O)2] · 2CH3COOH (I) was obtained for the first time from zinc(II) benzoate. The individuality, the unit cell parameters, and the number of “guest” molecules in complex I were determined from X-ray diffraction and derivatographic data. Its crystal structure was solved.  相似文献   

9.
The system hydrogen peroxide–hexafluoroacetone sesquihydrate effectively oxidizes adamantane in the presence of VO(acac)2 to afford 64% of adamantan-1-ol in tert-butyl alcohol or 76% of adamantan-2-one in a mixture of acetic acid with pyridine.  相似文献   

10.
Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products of the thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139 °C and the dehydroxylation occurs over the temperature range 200–700 °C with loss of the OH units. The critical temperature for OH loss is around 416 °C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788 °C. This study shows the mineral is unstable above 139 °C. This temperature is well above the temperature in the caves of 15 °C maximum. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.  相似文献   

11.
Single crystals of Li(H3O)[UO2(C2O4)2(H2O)] · H2O (I) have been synthesized and studied by X-ray diffraction. Compound I crystallizes in the monoclinic crystal system with the unit cell parameters: a = 7.1682(10) Å, b = 29.639(6) Å, c = 6.6770(12) Å, β= 112.3(7)°, space group P 21/c, Z = 4, R = 4.36%. Structure I contains discrete mononuclear groups [UO2(C2O4)2(H2O)]2? ascribed to the crystal-chemical group AB 2 01 M1 (A = UO2 2+, B01 =C2O 4 2? , M1 = H2O), which are “cross-linked” by the lithium ions into infinite layers {Li(UO2)(C2O4)2(H2O)2}? perpendicular to [010]. The hydroxonium ions are located between adjacent uranium-containing layers. A hydrogen bond system involving water molecules, oxalate ions, and hydroxonium combines the anionic layers into a three-dimensional framework.  相似文献   

12.
The crystal structure of tripotassium trisaccharinate dihydrate, K3(C7H4NO3S)3·2H2O, is triclic, space group\(P \bar 1, Z = 2\). It consists of three crystallographically independent potassium and saccharinato ions as well as two structurally different water molecules. Potassium coordination polyhedra are irregular, with K1 and K3 six-coordinated and the third one K2 seven-coordinated. The K?O distances range from 2.652(9) to 3.100(2) Å(mean: 2.790 Å) whereas the K?N distance is 3.025(3) Å. The water molecules W2 is disordered over three positions with occupancies of approximately 0.6, 0.2 and 0.2. The hydrogen atom (H1W1) of the ordered water molecule (O1W) is hydrogen bonded to the sulfonyl oxygen atom (O11) (R(O...O)=2.976(3) Å), whereas the other hydrogen atom (H2W1) is bifurcated to the carbonyl oxygen atom (O13) (R(O...O)=2.851(3) Å) and the disordered water molecules (O23W) (R(O...O)=3.067(12) Å). The carbonyl oxygens (O13, O23 and O33) and one of the disordered water molecules (O22W) are involved in C?H...O hydrogen bonds (R(C?H...O)=3.027(4)–3.304(9) Å). Structural characteristics of the studied compound are compared with the analogous trisodium trisaccharinate dihydrate and dipotassium sodium trisaccharinate monohydrate. Infrared and Raman spectra of the title compound have been analyzed in relation to the structure, and compared with the spectra of trisodium trisaccharinate dihydrate.  相似文献   

13.
Aqueous solutions of La(CH3CO2)3, NaCH3CO2 and La(ClO4)3 were studied using Raman spectroscopy. In dilute NaCH3CO2 solution, acetate is fully hydrated and forms only minor amounts of ion pairs. The characteristic Raman bands are discussed and assigned. In fairly dilute La(ClO4)3 solutions, the La3+(aq) ion occurs as the nonahydrate. The separation of the carboxylate bands, νas – νs (Δ-value), in NaCH3CO2(cr) compared to La(CH3CO2)3·1.5H2O(cr) correlates with the bonding type of acetate which is “ionic” in the former but bidentate chelating/tridentate chelating in the latter. Other acetate bands such as the deformation mode of the CO2 moiety, δ CO2, and the two rocking vibrations (ρ), as well as the C–C stretch show marked differences in their band positions in NaCH3CO2(cr) compared to the ones in La(CH3CO2)3·1.5H2O(aq). In a ternary solution of La(CH3CO2)3/LaCl3 with a molar ratio La3+(aq): \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)(aq) = 3.87: 1.00), the bands of the bound acetate on La3+ were characterized and compared to those of fully hydrated acetate, \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \left( {\text{aq}} \right) \). In this solution, almost all acetate is ligated to La3+ in a bidentate fashion and two complex species could be identified (molar ratios La3+: \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)  = 1:1 and 1:2, respectively). In La(CH3CO2)3 solutions in H2O and D2O strong acetato complexes are formed and the bands of the bound acetate were characterized and compared with the ones of the fully hydrated acetate modes. A dilution series down to 0.0037 mol·L?1 in La(CH3CO2)3(aq) and to 0.0150 mol·L?1 in La(CH3CO2)3(D2O) showed that two acetate complexes are formed in these solutions. Again, it was shown that in these solutions the bound acetates on La3+ exist as bidentate ligands. DFT frequencies of the acetate on clusters {La(OH2)7O2CCH3)}2+ and {La(OH2)5(O2CCH3)2}+ compared well with the measured values. By determining the ligation number, \( \bar{n} \), it can be established that in dilute solutions, below 0.04 mol·L?1, a complex with a 1:1 stoichiometry (La3+: \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)) exists in equilibrium with “free” acetate while in more concentrated solutions a 1:2 complex also forms. La3+(aq) hydrolysis is slight and very small equilibrium concentrations of CH3COOH were detected (C–C stretch at 893 cm?1). From quantitative Raman measurements, K 1 was determined to be 160 ± 10 at 22 °C.  相似文献   

14.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

15.
The reaction of [Sc(OH)(H2O)5]2Cl4 · 2H2O in isopropanol with 4,4′-Bipy in CHCl3 produced a crystalline compound, which was identified as [H4(4,4′-Bipy)3][Sc(OH)(H2O)5]2Cl8 (I) by elemental analysis, IR spectra, and single-crystal X-ray diffraction. In the structure of compound I, the three protonated diimine molecules form a centrosymmetric trimer via N...N hydrogen bonds. The polyhedron around the Sc atom is an octahedron with one split vertex. The excursion of the Sc atom from the plane formed by the oxygen atoms (water molecules) toward the hydroxo bridges is 0.5 Å. The thermolysis of compound I generates ScCl3, whereas the final decomposition product of the precursor dimer is ScOCl.  相似文献   

16.
A complex of neodymium perchloric acid coordinated with L-glutamic acid and imidazole, [Nd(Glu)(H2O)5(Im)3](ClO4)6·2H2O was synthesized and characterized by IR and elements analysis for the first time. The thermodynamic properties of the complex were studied with an automatic adiabatic calorimeter and differential scanning calorimetry (DSC). Glass transition and phase transition were discovered at 221.83 and 245.45 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4 ions and the phase transition was attributed to the orientational order/disorder process of ClO4 ions. The heat capacities of the complex were measured with the automatic adiabatic calorimeter and the thermodynamic functions [H T-H 298.15] and [S T-S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).  相似文献   

17.
A new neptunium(V) complex [(NpO2)2(CH3COO)2(H2O)] ? 2H2O was synthesized and its crystal structure was determined. The unit cell parameters are: a = 24.007(10) Å, b = 6.779(3) Å, c = 8.076(3) Å, space group Pnma, Z = 4, V = 1314.2(9) Å3, R = 0.049, wR(F2) = 0.105. The crystal structure of the compound is composed of neutral [(NpO2)2(CH3COO)2(H2O)] layers and molecules of the water of crystallization. Each of the crystallographically independent neptunoyl ions performs a bidentate function thus forming a composite system of cation-cation bonds.  相似文献   

18.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

19.
[Ln(H2O)8][Cr(NCS)6] · 5H2O aqua complexes, where Ln = Er (1), Lu (2), have been found in an aqueous solution instead of binary complex salts with an organic ligand in their cation, when crystal products of the reaction between Ln(NO3)3 · 6H2O (Ln = Er, Lu), K3[Cr(NCS)6] · 4H2O, and 8-oxyquinoline (C9H7NO) were studied by X-ray diffraction. Crystals of complexes 1 and 2 are isostructural and crystallize in triclinic system, space group P\(\bar 1\), Z = 2. For complex 1: a = 9.0677(4) Å, b = 9.3115(4) Å, c = 16.9595 Å, α = 81.526(2)°, β = 86.153(2)°, γ = 83.879(2)°, V = 1406.33(10) Å3, ρcalc = 1.894 g/cm3; for complex 2: a = 9.0438(3) Å, b = 9.2880(3) Å, c = 16.9181(3) Å, α = 81.7250(10)°, β = 86.1600(10)°, γ = 83.8850(10)°, V = 1396.38(7) Å3, ρcalc = 1.926 g/cm3.  相似文献   

20.
[Cd(NTO)4Cd(H2O)6] •4H2O was synthesized by mixing the aqueous solution of 3-nitro-1, 2,4-triazol-5-one (NTO) and cadmium carbonate. The single crystal structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, space group C2/c with crystal parameters of a = 2.1229(3) nm, b = 0.6261(8) nm, = 2.1165(3) nm, β= 90.602 (3)°, V= 2.977(6) nm3, Z = 4, Dc = 2.055 g • cm-3, μ = 15.45 cm-1 and F(000) = 1824. 2523 observable independent reflections with F04σ(F0) were used for the determination and refinement of the crystal structure. Lorentz-polarization and absorption correction were applied. The final R is 0.0282 and wR = 0.0792. The analytical results show that the Cd+2 has two kinds of coordinate bonds in one crystal. One Cd+2 coordinates with 4 NTO anions and another coordinates with 6 water molecules to form a binucleate complex with a structure of tetrahedron and tetragonal bipyramid, respectively. By using SCF-PM3-MO method, the electron structure of cadmium complex of NTO has been calculated. The analysis of the calculated results shows that when [Cd(NTO)4Cd(H2O)6] • 4H2O is heated, the crystallization waters will be dissociated first and the ligand waters second and NO2 group has priority of leaving when NTO is decomposed. Analysis of the energy level and composition of localized molecular orbitals indicates that both the two Cd2+ bond to the coordinating atom with 5s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号