首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The continuing emergence of designer drugs imposes high demands on the scope and sensitivity of toxicological drug screening procedures. An ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method was developed for screening and simultaneous confirmation of both designer drugs and other drugs of abuse in urine samples in a single run. The method covered selected synthetic cannabinoids and cathinones, amphetamines, natural cannabinoids, opioids, cocaine and other important drugs of abuse, together with their main urinary metabolites. The database consisted of 277 compounds with molecular formula and exact monoisotopic mass; retention time was included for 192 compounds, and primary and secondary qualifier ion exact mass for 191 and 95 compounds, respectively. Following a solid-phase extraction, separation was performed by UHPLC and mass analysis by HR-TOFMS. MS, and broad-band collision-induced dissociation data were acquired at m/z range 50–700. Compound identification was based on a reverse database search with acceptance criteria for retention time, precursor ion mass accuracy, isotopic pattern and abundance of qualifier ions. Mass resolving power in spiked urine samples was on average FWHM 23,500 and mass accuracy 0.3 mDa. The mean and median cut-off concentrations determined for 75 compounds were 4.2 and 1 ng/mL, respectively. The range of cut-off concentrations for synthetic cannabinoids was 0.2–60 ng/mL and for cathinones 0.7–15 ng/mL. The method proved to combine high sensitivity and a wide scope in a manner not previously reported in drugs of abuse screening. The method’s feasibility was demonstrated with 50 authentic urine samples.
Figure
Extracted ion chromatograms of metabolites of synthetic cannabinoids and their fragments, including a new common metabolite: JWH-072-propanoic acid  相似文献   

2.
A fast liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) method has been developed for simultaneous quantitative multiclass determination of residues of selected antibiotics and other veterinary drugs (benzalkonium chloride, ethoxyquin, leucomalachite green (LMG), malachite green (MG), mebendazole, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanilamide, sulfapyridine, sulfathiazole and trimethoprim) in shrimps. Different sample treatment methodologies were tested for the extraction of the targeted species based on either liquid partitioning with different solvents, solid-phase extraction or and matrix solid-phase dispersion. The final selected extraction method consisted of solid-liquid extraction protocol using acetonitrile as solvent followed by a clean-up step with primary secondary amine (QuEChERS). Recovery rates for the extraction of the selected multiclass chemicals were in the range 58-133%. Subsequent identification, confirmation and quantitation were carried out by LC-TOFMS analysis using a reverse-phase C18 column with 1.8 μm particle size. The confirmation of the target species was based on accurate mass measurements of the protonated molecules ([M+H]+) and their fragment ions, obtaining routine accuracy errors lower than 2 ppm in most cases. The optimized LC-TOFMS method displayed excellent sensitivity for the studied analytes, with limits of detection (LODs) in the range 0.06-7 μg kg−1. Finally, the proposed method was successfully applied to the analysis of 12 shrimp samples collected from different supermarkets, showing the potential applicability of the method for ultratrace detection of these chemicals in such complex matrix.  相似文献   

3.
A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified.  相似文献   

4.
采用超高效液相色谱-线性离子阱/静电场轨道阱高分辨质谱法同时测定化妆品中磺胺类、沙星类等66种抗生素类化合物,建立了快速筛查数据库和定量分析方法。待测物用乙腈超声提取,C18色谱柱(100 mm×2.1 mm,1.8 μm)分离,以0.1%(v/v)甲酸水溶液和乙腈为流动相进行梯度洗脱。在正离子模式下,以保留时间和一级母离子精确质量数进行快速筛查,以高能碰撞诱导解离获得的二级碎片离子精确质量数进行确证。结果表明,化合物的线性关系良好,线性相关系数(R2)>0.99;检出限(LOD)为2~4 μg/kg;定量限(LOQ)为5~10 μg/kg;3个添加水平(1LOQ、10LOQ、30LOQ)的平均回收率为58.2%~119.1%,相对标准偏差为1.03~11.9%。该方法简便快速、定性定量可靠,适用于化妆品中抗生素类化合物的快速筛查和定量检测。  相似文献   

5.
In clinical or forensic toxicology, general unknown screening procedures are used to identify as many xenobiotics as possible, belonging to numerous chemical classes. We present here a general unknown screening procedure based on liquid chromatography coupled with use of a single linear ion trap mass spectrometer, and focus on the identification of pesticides and/or metabolites in whole blood. After solid-phase extraction (SPE), the compounds of interest were separated using a reversed-phase column and identified by the mass spectrometer operated first in the full-scan mass spectrometry (MS) mode, in the positive and negative polarities, followed by MS2 and MS3 scanning of ions selected in data-dependent acquisition. The total scan time was 2.45 s. Two mass spectral libraries (MS2 and MS3), each of 450 spectra, were created for the 320 pesticides and metabolites detected after injection of pure solutions. Robustness of the spectra and matrix effects were studied and were satisfactory for the present application. Detection limits for the 320 compounds were studied by extracting 1 mL spiked blood at concentrations between 10 μg/L and 10 mg/L. If necessary, it was possible to decrease the detection limits of some compounds by 10–100-fold by scanning MS2 in only one polarity, owing to a shorter total scan time. However, at the same time, the detection specificity decreased as no confirmation could be recorded in the following MS3 scan and no information could be registered in the other polarity. So, in these rare cases, confirmation by another method was required.  相似文献   

6.
A method for the rapid simultaneous screening and identification of multiple pesticide residues in vegetables was established using a novel database and gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC–QTOF MS). A total of 187 pesticides with different chemical species were measured by GC–QTOF MS to create the database, which collected the retention time and exact masses of ions from the first-stage mass spectrum (MS1 spectrum) and second-stage mass spectrum (MS2 spectrum) for each pesticide. The workflow of the created database consisted of “MS1 screening” for possible pesticides by chemical formula match and “MS2 identification” for structural confirmation of product ion by accurate mass measurement. To evaluate the applicability of the database, a spinach matrix was prepared by solid phase extraction, spiked with a mixture of 50 pesticides at seven concentrations between 0.1 and 10 ppb, and analyzed by GC–QTOF MS. It was found that all of the 50 pesticides with concentrations as low as 5 ppb were detected in the “MS1 screening” step and accurate masses were identified with errors less than 2.5 mDa in the “MS2 identification” step, indicating high sensitivity, accuracy, selectivity and specificity. Finally, to validate the applicability, the new method was applied to four fresh celery, rape, scallion and spinach vegetables from a local market. As a result, a total of 13 pesticides were found, with 11 in celery, 9 in rape, 3 in scallion and 2 in spinach. In conclusion, GC–QTOF MS combined with an exact mass database is one of the most efficient tools for the analysis of pesticide residues in vegetables.  相似文献   

7.
李杨杰  黄佳颖  方继辉  黄志业 《色谱》2022,40(5):433-442
建立了超高效液相色谱-四极杆-飞行时间高分辨质谱(UPLC-Q-TOF HRMS)同时快速筛查确证化妆品中73种常见禁用物质的方法。样品经饱和氯化钠溶液分散均匀后,采用含0.2%甲酸的乙腈溶液超声提取,50 mg PSA净化,以8000 r/min高速冷冻离心除脂,采用Waters Acquity HSS T3色谱柱(100 mm×2.1 mm, 1.8 μm)分离。采用多反应监测高分辨扫描模式(MRM HR),以保留时间、一级母离子精确质量数、同位素丰度比和二级子离子精确质量数实现化妆品中73种禁用物质的快速筛查和确证,基质匹配外标法定量。实验比较了不同提取溶剂、净化吸附剂、色谱条件和质谱扫描模式对73种禁用物质测定的影响,并考察了膏霜剂和水剂的基质效应。结果表明,73种禁用物质线性关系良好,相关系数(R2)>0.99;检出限为5~150 μg/kg;定量限为15~450 μg/kg;膏霜剂及水剂两种基质在3个加标水平下的回收率为60.3%~130.3%,日内、日间RSD分别为0.8%~10.0%(n=6)和1.1%~15.0%(n=3)。日常风险监测中检出磺胺甲基异噁唑、甲基泼尼松、林可霉素、对乙酰氨基酚、甲氧苄啶、阿法骨化醇、倍他米松戊酸酯、溴莫尼定、氯霉素、氯苯那敏、氯倍他索丙酸酯、克罗米通、益康唑、酮康唑、泼尼松醋酸酯和泼尼松,检出含量范围为0.5~1136.1 mg/kg。该方法准确、快速、简便,可用于化妆品中73种常见禁用物质的检测。  相似文献   

8.
An automated molecular-feature database (MFD) consisting of the exact monoisotopic mass of 100 compounds, at least one exact mass product ion for each compound, and chromatographic retention time were used to identify pesticides in food and water samples. The MFD software compiles a list of accurate mass ions, excludes noise, and compares them with the monoisotopic exact masses in the database. The screening criteria consisted of +/-5 ppm accurate mass window, +/-0.2 min retention time window, and a minimum 1000 counts (signal-to-noise (S/N) ratio of approximately 10:1). The limit of detection for 100 tested compounds varied from <0.01 mg/kg for 72% of the compounds to <0.1 mg/kg for 95% of the compounds. The MFD search was useful for rapid screening and identification of pesticides in food and water, as shown in actual samples. The combined use of accurate mass and chromatographic retention time eliminated false positives in the automated analysis. The major weakness of the MFD is matrix interferences and loss of mass accuracy. Strengths of the MFD include rapid screening of 100 compounds at sensitive levels compared with a manual approach and the ease of use of the library for any accurate mass spectrometer instrumentation capable of routine sub-5-ppm mass accuracy.  相似文献   

9.
Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low-field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM-MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high-resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.  相似文献   

10.
徐红斌  张申平  杜茹芸  周静  翁史昱 《色谱》2022,40(6):531-540
建立了基于超高效液相色谱-Orbitrap高分辨质谱的快速筛查及确证减肥和壮阳类保健食品中32种非法添加药物的分析方法,并总结了数据库建立和应用的相关要点。研究对象聚焦于非法添加药物的衍生物,在对比正负离子模式下各化合物响应强度的基础上建立了高分辨质谱信息库,对提取溶剂、色谱柱温度等实验条件进行了详细探究,尽可能给出了较宽的标准曲线线性范围。使用Hypersil gold vanquish色谱柱(100 mm×2.1 mm,1.9μm),梯度洗脱,流量0.3 mL/min,正、负离子全扫描/数据依赖的二级扫描模式,在17 min内完成32种目标化合物的数据采集,通过TraceFinder软件进行快速定性筛查和定量。结果显示在17 min内32种化合物能得到较好分离;2种基质加标溶液中32种化合物的一级质谱离子精确质量数的实测值与理论值均在5×10^(-6)误差之内,二级碎片离子质量数的实测值与理论值均在1×10^(-5)误差之内;方法学验证结果表明,所有化合物均显示出优异的线性关系,相关系数(r^(2))均大于0.99;固体基质中除达泊西汀、羟基硫代豪莫西地那非、硫代豪莫西地那非、硫代西地那非、去甲基硫代西地那非的回收率较低外,其余27种化合物的回收率为50.5%~84.5%,相对标准偏差(RSD)为1.2%~13%,液体基质中32种化合物的回收率范围为60.4%~109.3%,RSD为0.77%~8.2%;在48份减肥及壮阳类保健食品中检出1份阳性样品,检出率2.08%。该方法操作简单,结果定性准确,可用于减肥及壮阳类保健食品中32种非法添加药物的快速筛查及确证。  相似文献   

11.
建立了筛查保健食品中非法添加的15种减肥类化合物的液相色谱-Orbitrap高分辨质谱联用法和TraceFinder筛查数据库。样品以甲醇为提取溶剂,上清液过滤后直接进行液相色谱-质谱联用分析。质谱采用Full MS/dd-MS2扫描模式,正负离子同时检测。将采集的数据文件导入TraceFinder筛查软件,利用软件构建了化合物数据库及筛查方法进行快速、自动、高精度筛查,确定样品中是否违法添加了减肥类药物,并对阳性样品进行定量分析。方法学验证结果表明,所有化合物均显示出优异的线性关系,标准曲线回归系数(r)均大于0.998,回收率范围为79.7%~95.4%,精密度在3.3%~8.7%之间。应用该方法对29批保健食品进行了测定,在6批阳性样品中检出了4种化合物。该方法可实现自动、高精度筛查鉴定,为打击非法添加提供了新的手段。  相似文献   

12.
李兆永  王凤美  牛增元  罗忻  张罡  陈军辉 《色谱》2014,32(5):477-484
建立了超高效液相色谱-线性离子阱/静电场轨道阱组合式高分辨质谱联用(UPLC-LTQ/Orbitrap MS)快速筛查、定性识别化妆品中24种激素的分析方法。不同剂型的化妆品样品经甲醇超声提取,用Waters ACQUITY UPLC BEH C18色谱柱(50 mm×2.1 mm,1.7 μm)分离,以乙腈和0.1%(v/v)甲酸水溶液为流动相进行梯度洗脱。通过静电场轨道阱全扫描得到激素化合物的准分子离子的精确质量数,实现对化妆品中激素的快速筛查;再以保留时间和数据依赖扫描(data dependent scan)模式获得的子离子质谱图进行定性确证。24种激素化合物的质量准确度误差小于3×10-6(3 ppm);线性良好,相关系数大于0.99;检出限≤10 μg/kg(S/N=3),能满足实际化妆品样品的分析要求。应用该方法对不同剂型的50余种化妆品样品进行筛查分析,结果良好。该方法是化妆品中激素快速筛查、定性识别的有效方法。  相似文献   

13.
The detection of corticosteroids and sex steroids in samples with no content indication, which are confiscated for forensic investigation, is a challenge in doping analysis. A screening method based on the identification of androgens, estrogens, gestagens, and their esters by means of a mass spectral library, along with a fast ultra-performance liquid chromatography–mass spectrometry (UPLC-MS) method, was recently developed in our lab for the analysis of dietary supplements. However, for forensic investigations, it is important to extend the scope of the method to corticosteroids in various matrices. Therefore, 36 corticosteroids were added to the mass spectral library, and the sample preparation step was modified so that androgens, gestagens, corticosteroids, and their esters could be analyzed with only one injection with the UPLC-MS method. A complementary tool to the existing library identification was found in the extraction of common fragment ions out of the full scan data obtained for the library search. The fragment ion with m/z 147 was found to be a good marker for the detection of steroids. Extra confirmation was obtained from the fragment ions with m/z 135 (for all steroids) and 237 (specific for corticosteroids) or from the fragment ions with m/z 77, 91, and 105. The effectiveness of this approach was evaluated on some samples previously screened for forensic investigation with thin-layer chromatography and confirmed with a targeted gas chromatography–mass spectrometry method. This study shows that the combination of the library identification and the common fragment ions approach can be a valuable tool in the detection of steroids without defining any target at the start of the analysis.  相似文献   

14.
The use of plasma volume expanders (PVE), such as dextran (DEX) and hydroxyethyl starch (HES), is prohibited in sports. DEX is a naturally occurring glucose polymer, whereas HES is synthetically produced from amylopectin starch by substitution with hydroxyethyl groups. In doping control, the commonly applied enzymatic and colorimetric screening methods are lacking adequate specificity for DEX and HES. Also, gas chromatographic–mass spectrometic (GC-MS) screening methods have specificity issues with DEX. In addition, due to the nature of the target compounds, time-consuming derivatisation steps are required in GC-MS. Based on the high molecular weight of carbohydrate polymers excreted in urine after administration of DEX and HES, a screening method was developed involving size exclusion chromatography (SEC) combined with time-of-flight mass spectrometry (TOFMS). By using solely a SEC guard column as an analytical column allowed sufficient chromatographic resolution in a minimal amount of time and with reasonable repeatability (average RSD of 10%). Detector response was linear throughout the measurement range with R 2 > 0.99 for both analytes. Limits of detection were 100 and 250 μg mL−1 for DEX and HES, respectively. Ion suppression was found to be 52% at maximum. In-source collision-induced dissociation (ISCID) was used to produce characteristic fragments at a mass accuracy better than 2 mDa. The specificity of the SEC–ISCID–TOFMS method was demonstrated with 120 PVE negative doping control samples analyzed in parallel with a routine GC-MS screening method. In addition, seven urine samples from diabetic athletes, causing interpretation problems in routine GC-MS, showed here a definitely negative profile.  相似文献   

15.
A selective and sensitive LC-MS/MS method is presented for simultaneous determination of 12 plant growth regulators, viz., indol-3-acetic acid, indol-3-butyric acid, kinetin, zeatin, 6-benzyl aminopurine, gibberellic acid, abscisic acid, chlormequat chloride, forchlorfenuron, paclobutrazole, daminozide, and 2,4-dichlorophenoxy acetic acid, in bud sprouts and grape berries. The sample preparation method involved extraction of homogenized sample (5 g) with 40 mL methanol (80%), and final determination was by LC-MS/MS in the multiple reaction monitoring (MRM) mode with time segmentation for quantification supported by complementary analysis by quadrupole-time of flight (Q-TOF) MS with targeted high-resolution MS/MS scanning for confirmatory identification based on accurate mass measurements. The recovery of the test compounds ranged within 90-107% with precision RSD less than 5% (n = 6). The method could be successfully applied in analyzing incurred residue samples, and the strength of accurate mass analysis could be utilized in identifying the compounds in cases where the qualifier MRM ions were absent or at an S/N less than 3:1 due to low concentrations.  相似文献   

16.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

17.
利用超声波提取、固相萃取净化对样品进行前处理,然后采用气相色谱/质谱-选择离子检测模式对大米中的25种持久性有机污染物进行了分析。色谱条件:DB-35MS毛细管色谱柱(30 m×0.25 mm i.d.×0.25 μm);载气为氦气,流速1 mL/min;进样口温度300 ℃;不分流进样,进样量1 μL;柱温为程序升温模式。质谱条件:电子轰击电离源,70 eV;采集方式为选择离子方式,扫描质量范围50~450 u。实验采用保留时间以及定性、定量特征离子的丰度比定性,采用峰面积外标法定量,制作了25种持久性有机污染物的标准工作曲线。不同浓度水平的添加回收率试验表明,25种持久性有机污染物的添加回收率为81.99%~100.60%,相对标准偏差为2.37%~18.48%,除异狄氏剂、反式氯丹和顺式氯丹的检测限分别为20,30和20 ng/g外,其他有机污染物的检测限为0.1~5 ng/g。该方法的灵敏度、准确度和精密度均符合农药多残留测定技术的要求。  相似文献   

18.
A powerful and rapid method has been developed for the identification and quantitative determination of alkyl methylphosphonic acids, which are the degradation products of nerve agents, using liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. Six alkyl methylphosphonic acids were well separated within 16 min. For quantitative analysis, good linearity, sensitivity and reproducibility were obtained by LC-MS in the selected ion monitoring mode. For unambiguous identification of alkyl methylphosphonic acids, fragment ions were produced by in-source collision induced dissociation (CID), and then exact mass measurement of CID fragment ions was performed. The feasibility of applying this technique for detecting these compounds in spiked environmental waters and soils was demonstrated.  相似文献   

19.
A multiresidue method based on solid-phase extraction was developed for the simultaneous determination of 50 pesticides in commercial juices. The extraction procedure was carried out in C18 columns preconditioned with acetonitrile and water. The subsequent elution of pesticides was performed with a mixture of hexane-ethyl acetate (1:1, v/v) prior to the determination by gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC-MS-SIM), using one target and two qualifier ions. Standards were prepared spiking blank juice samples to counteract the observed matrix effect. Average recoveries for all the pesticides studied were higher than 91% with relative standard deviations lower than 9% in the concentration range of 0.02-0.1 μg/mL and the detection limits achieved ranged from 0.1 to 4.6 μg/L. The proposed method was applied to the analysis of these compounds in commercial juices and diazinon, ethion and procymidone were the pesticides encountered, although the levels found were very low.  相似文献   

20.
This work presents the validation study of the comprehensive two-dimensional gas chromatography (GC×GC)–time-of-flight mass spectrometry method performance in the analysis of the key World Anti-Doping Agency (WADA) anabolic agents in doping control. The relative abundance ratio, retention time, identification and other method performance criteria have been tested in the GC×GC format to confirm that they comply with those set by WADA. Furthermore, tens of other components were identified with an average similarity of >920 (on the 0–999 scale), including 10 other endogenous sterols, and full mass spectra of 5,000+ compounds were retained. The testosterone/epitestosterone ratio was obtained from the same run. A new dimension in doping analysis has been implemented by addressing separation improvement. Instead of increasing the method sensitivity, which is accompanied by making the detector increasingly “blind” to the matrix (as represented by selected ion monitoring mode, high-resolution mass spectrometry (MS) and tandem MS), the method capabilities have been improved by adding a new “separation” dimension while retaining full mass spectral scan information. Apart from the requirement for the mass spectral domain that a minimum of three diagnostic ions with relative abundance of 5% or higher in the MS spectra, all other WADA criteria are satisfied by GC×GC operation. The minimum of three diagnostic ions arises from the need to add some degree of specificity to the acquired mass spectrometry data; however, under the proposed full MS scan method, the high MS similarity to the reference compounds offers more than the required three diagnostic ions for an unambiguous identification. This should be viewed as an extension of the present criteria to a full-scan MS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号