首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In quantum information context, the groups generated by Pauli spin matrices, and Dirac gamma matrices, are known as the single qubit Pauli group ℘, and two-qubit Pauli group ℘2, respectively. It has been found (Socolovsky, Int. J. Theor. Phys. 43: 1941, 2004) that the CPT group of the Dirac equation is isomorphic to ℘. One introduces a two-qubit entangling orthogonal matrix S basically related to the CPT symmetry. With the aid of the two-qubit swap gate, the S matrix allows the generation of the three-qubit real Clifford group and, with the aid of the Toffoli gate, the Weyl group W(E 8) is generated (Planat, Preprint , 2009). In this paper, one derives three-qubit entangling groups [(P)\tilde]\tilde{\mathcal{P}} and [(P)\tilde]2\tilde{\mathcal{P}}_{2}, isomorphic to the CPT group ℘ and to the Dirac group ℘2, that are embedded into W(E 8). One discovers a new class of pure three-qubit quantum states with no-vanishing concurrence and three-tangle that we name CPT states. States of the GHZ and CPT families, and also chain-type states, encode the new representation of the Dirac group and its CPT subgroup.  相似文献   

2.
A two spinor lagrangian formulation of field equations for massive particle of arbitrary spin is proposed in a curved space-time with torsion. The interaction between fields and torsion is expressed by generalizing the situation of the Dirac equation. The resulting field equations are different (except for the spin-1/2 case) from those obtained by promoting the covariant derivatives of the torsion free equations to include torsion. The non linearity of the equations, that is induced by torsion, can be interpreted as a self-interaction of the particle. The spin-1 and spin-3/2 cases are studied with some details by translating into tensor form. There result the Proca and Rarita-Schwinger field equations with torsion, respectively. PACS numbers: 03.65.Pm; 04.20.Cv; 04.20.Fy.  相似文献   

3.
4.
5.
6.
Spin polarizabilities of spin-1 particles typical of spin-1/2 hadrons are established within the Duffin–Kemmer–Petiau formalism using the relativistically invariant effective tensor representation of Lagrangians of two-photon interaction with hadrons. New spin polarizabilities of spin-1 particles associated with the presence of tensor polarizabilities are also determined.  相似文献   

7.
In this study, we explore the entanglement of free spin-(1/2), spin-1, and spin-2 fields. We start with an example involving Majorana fields in 1+1 and 2+1 dimensions. Subsequently, we perform the Bogoliubov transformation and express the vacuum state with a particle pair state in the configuration space, which is used to calculate the entropy. This clearly demonstrates that the entanglement entropy originates from the particles across the boundary.Finally, we generalize this method to free spin-1 and spin-2 fields. These higher free massless spin fields have wellknown complications owing to gauge redundancy. We deal with the redundancy by gauge-fixing in the light-cone gauge. We show that this gauge provides a natural tensor product structure in the Hilbert space, while surrendering explicit Lorentz invariance. We also use the Bogoliubov transformation to calculate the entropy. The area law emerges naturally by this method.  相似文献   

8.
At one-loop level the decay , where f1 and f2 are two spin-1/2 particles with the same electric charge, is mediated by a boson B and a spin-1/2 fermion F. The boson B may have either spin - interacting with the fermions through the Dirac matrices 1 and - or spin 1 - with V+A and V-A couplings to the fermions. I give general formulae for the one-loop electroweak amplitude of in all these cases. Received: 24 February 2003 / Revised version: 26 March 2003 / Published online: 2 June 2003  相似文献   

9.
The effect of a longitudinal random crystal field interaction on the phase diagrams of the mixed spin transverse Ising model consisting of spin-1/2 and spin-1 is investigated within the finite cluster approximation based on a single-site cluster theory. In order to expand a cluster identity of spin-1, we transform the spin-1 to spin-1/2 representation containing Pauli operators. We derive the state equations applicable to structures with arbitrary coordination number N. The phase diagrams obtained in the case of a honeycomb lattice (N=3) and a simple-cubic lattice (N=6), are qualitatively different and examined in detail. We find that both systems exhibit a variety of interesting features resulting from the fluctuation of the crystal field interactions. Received: 13 February 1998 / Accepted: 17 March 1998  相似文献   

10.
Quantum theory of Lorentz invariant local scalar fields without restrictions on 4-momentum spectrum is considered. The mass spectrum may be both discrete and continues and the square of mass as well as the energy may be positive or negative. One may assume the existence of such fields only if they interact with ordinary fields very weakly. Generalization of Kallen-Lehmann representation for propagators of these fields is found. The considered generalized fields may violate CPT-invariance. Restrictions on mass-spectrum of CPT-violating fields are found. Local fields that annihilate vacuum state and violate CPT-invariance are constructed in this scope. Correct local relativistic generalization of Lindblad equation for density matrix is written for such fields. This generalization is particularly needed to describe the evolution of quantum system and measurement process in a unique way. Difficulties arising when the field annihilating the vacuum interacts with ordinary fields are discussed.  相似文献   

11.
Three-dimensional magnetic ordering transitions are studied theoretically in strongly anisotropic quantum magnets. An external magnetic field can drive quasi-one-dimensional subsystems with a spin gap into a gapless regime, thus inducing long-range three-dimensional magnetic ordering due to weak residual magnetic coupling between the subsystems. Compounds with higher spin degrees of freedom, such as N-leg spin-1/2 ladders, are shown to have cascades of ordering transitions. At high magnetic fields, zero-point fluctuations within the quasi-1D subsystems are suppressed, causing quantum corrections to the ordering temperature to be reduced. Received 24 March 2000  相似文献   

12.
Continuous wave cross-polarization (CP) NMR experiments with magic angle spinning (MAS) are reviewed for the case of isolated spin pairs I-S, with spin quantum numbers I = ½ and S ½ (1/2, 3/2, …). For two spin-1/2 nuclei, the Hartmann-Hahn matching conditions are examined at various sample rotation rates νR, especially with regard to off-resonance behaviour. In addition to signal enhancement, the CPMAS experiment can be used for the selective determination of inter-nuclear distances between spin-1/2 nuclei. Theoretical examination of the CP transfers to single-quantum (1Q-CPMAS) and multiple-quantum (MQ-CPMAS) levels of quadrupolar nuclei is presented. Simple analytical formulae describing the Hartmann-Hahn matching under various experimental conditions are verified using computer simulations of the spin density matrix under MAS, and the experimental data. The strategies for the most efficient acquisition of 1Q-CPMAS and MQ-CPMAS spectra are extensively discussed.  相似文献   

13.
Eric A Lord 《Pramana》1987,29(4):359-368
Poincaré gauge theory is derived from a linear theory by the method suggested by Gupta for deriving Einstein’s general relativity from the linear theory of a spin-2 field. Non-linearity is introduced by requiring that a set of tensor fields be coupled to the Noether currents of the Poincaré group (energy-momentum and spin).  相似文献   

14.
Requiring covariance of Maxwell's equations without a priori imposing charge invariance allows for both spin-1 and spin-1/2 transformations of the complete Maxwell field and current. The spin-1/2 case yields new transformation rules, with new invariants, for all traditional Maxwell field and source quantities. The accompanying spin-1/2 representations of the Lorentz group employ the Minkowski metric, and consequently the primary spin-1/2 Maxwell invariants are also spin-1 invariants; for example, 2A 2, E 2B 2+2i EB–(0 +A)2. The associated Maxwell Lagrangian density is also the same for both spin-1 and spin-1/2 fields. However, in the spin-1/2 case, standard field and source quantities are complex and both charge and gauge invariance are lost. Requiring the potentials to satisfy the Klein–Gordon equation equates the Maxwell and field-potential equations with two Dirac equations of the Klein–Gordon mass, and thus one complex Klein–Gordon Maxwell field describes either two real vector fields or two Dirac fields, all of the same mass.  相似文献   

15.
K P Sinha 《Pramana》1984,23(2):205-214
A review of some recent papers on gauge theories of weak and strong gravity is presented. For weak gravity, SL(2, C) gauge theory along with tetrad formulation is described which yields massless spin-2 gauge fields (quanta gravitons). Next a unified SL(2n,C) model is discussed along with Higgs fields. Its internal symmetry is SU(n). The free field solutions after symmetry breaking yield massless spin-1 (photons) and spin-2 (gravitons) gauge fields and also massive spin-1 and spin-2 bosons. The massive spin-2 gauge fields are responsible for short range superstrong gravity. Higgs-fermion interaction can lead to baryon and lepton number non-conservation. The relationship of strong gravity with other forces is also briefly considered.  相似文献   

16.
The notion of local quasi-gauge bundle structure is introduced. We show that general relativity can be recast in a local quasi-SU(2)-bundle framework. In the limit of weak asymptotic gravitational field, this geometrical setup gives rise to spin-2 tensor fields sourcing global charges. If such charges are available, it is shown that the asymptotic geometrical framework is that of aU(1) gauge bundle overS 2, the commutative geometry of the (Dirac) magnetic monopole.  相似文献   

17.
The consequences of CP and CPT invariance for production and subsequent decay of Dirac and Majorana fermions in polarized fermion-antifermion annihilation are analytically studied. We derive general symmetry relations for the production spin density matrix and for the three-particle decay matrices and obtain constraints for the polarization and the spin-spin correlations of Dirac and Majorana fermions. We prove that only for Majorana fermions the energy and opening angle distribution factorizes exactly into contributions from production and decay if CP is conserved. Received: 6 November 2001 / Revised version: 23 April 2002 / Published online: 12 July 2002  相似文献   

18.
The spin-1/2 anisotropic Heisenberg model is studied by generalizing the Migdal-Kadanoff renormalization transformations to quantum spin systems. An approximate one-dimensional decimation is employed besides the potential-moving approximation in this generalization. It is shown that these approximations are valid at high temperatures. The results obtained from these approximations suggest that the two-dimensional spin-1/2X-Y model shows the critical behavior similar to that expected for the classicalX-Y and planar models.  相似文献   

19.
成泰民  葛崇员  孙树生  贾维烨  李林  朱林  马琰铬 《物理学报》2012,61(18):187502-187502
利用不变本征算符法, 计算低温下自旋为1/2的XY模型一维亚铁磁棱型链系统的元激发谱, 讨论在此系统中不同的特殊情形下的元激发能量, 从而给出体系的三个临界磁场强度的解析解HC1, HC2, Hpeak. 分析不同外磁场下 体系的磁化强度随温度的变化规律, 发现三个临界磁场强度的解析解HC1, HC2, Hpeak是正确的, 并从三个元激发对磁化强度的贡献进行了说明. 低温下磁化强度随外磁场的变化呈现1/3磁化平台. 体系的磁化率随温度或者外磁场的变化都出现了双峰现象. 这说明双峰源于二聚体分子内电子自旋平行排列的铁磁交换作 用能和二聚体与单基体分子间电子自旋反平行排列的反铁磁交换作用能, 热无序能, 外磁场强度相关的自旋磁矩势能之间的竞争.  相似文献   

20.
We consider quantum electrodynamics with additional coupling of spinor fields to the space-time independent axial vector violating both Lorentz and CPT-symmetries. The Fock-Schwinger proper-time method is used to calculate the one-loop effective action up to the second order in the axial vector and to all orders in the space-time independent electromagnetic field strength. We find that the Chern-Simons term is not radiatively induced and that the effective action is CPT-invariant in the given approximation. Received: 29 January 2003 / Published online: 24 March 2003 RID="a" ID="a" e-mail: sitenko@itp.unibe.ch RID="b" ID="b" e-mail: rulik@to.infn.it  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号